Journal of Power Sources 242 (2013) 855-859

Contents lists available at SciVerse ScienceDirect

Journal of Power Sources

journal homepage: www.elsevier.com/locate/jpowsour

Binder-free nitrogen-doped carbon nanotubes electrodes for lithium-oxygen batteries

Xiujing Lin^a, Xu Lu^a, Tao Huang^a, Zhaolin Liu^{b,**}, Aishui Yu^{a,*}

^a Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, Fudan University, 220 Handan Road, Shanghai 200438, China

^b Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 3 Research Link, Singapore 117602, Singapore

HIGHLIGHTS

• A simple one-step method to synthesize binder-free N-CNTs@Ni electrodes.

• The N-CNTs@Ni electrode delivers a higher capacity of 1814 mAh g⁻¹ electrode.

• The unique 3-dimension network structure leads to less polarization as well as good electrochemical performance.

A R T I C L E I N F O

Article history: Received 7 April 2013 Received in revised form 21 May 2013 Accepted 27 May 2013 Available online 5 June 2013

Keywords: Lithium-oxygen batteries Binder-free Nitrogen-doped carbon nanotubes Polarization

ABSTRACT

Here the binder-free nickel foam supported nitrogen-doped carbon nanotubes (N-CNTs@Ni) are synthesized by a floating catalyst chemical vapor deposition (FCCVD) method. Without any additional treatment, it could be employed as the air electrode in the lithium-oxygen batteries and delivers 1814 mAh g⁻¹ (normalized to the weight of the air electrode) at the current density of 0.05 mA cm⁻². The loose packing 3-dimension network structure facilitates the O_2 diffusion in the inner electrode and provides enough void volume for the products deposition during discharge process. The improved contact between N-CNTs and the current collector Ni is beneficial to suppress the volume expansion and leads to less polarization as well as good cycling performance.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Rechargeable lithium-oxygen batteries are considered promising for electric vehicles (EVs) and hybrid electric vehicles (HEVs) due to their extremely high energy density [1]. A prototype lithiumoxygen battery is composed of a lithium anode, organic electrolyte and a porous carbon-based electrode exposed to gaseous O₂ during cell operation. Upon discharge, Li⁺ reduces O₂ to form insoluble, insulated lithium peroxide, which gradually blocks the electrolyte and oxygen pathways and eventually leads to the huge polarization and poor performance [2–4]. Therefore, the essential prerequisite for a rechargeable lithium-oxygen battery is to develop an optimum carbon electrode with appropriate morphology and structure.

To the best of our knowledge, much work has been done to explore how the morphology and structure of carbon material influence the cell performance, such as the pore diameter distribution [5,6], the thickness of the electrode [7]. In order to improve the performance of lithium-oxygen batteries, kinds of carbon have been employed in the air electrode, including high-surface area carbon material [8,9], mesocellular carbon [6], hierarchically porous honeycomb-like carbon [10], porous carbon aerogels [11] as well as graphene [2,4,12,13]. However, the porous carbon particles above are closely aggregated by a binder in the electrode and such a tight aggregation unavoidably results in the decrease in the electrode porosity [14], a low O₂-diffusion rate as well as a limited space for Li₂O₂ deposition, which consequently leads to low utilization of the carbon electrode [15]. In addition, the polyvinylidene difluoride binder (PVdF) used to fabricate the porous electrode is not stable in the presence of superoxide as well as Li₂O₂ [16-18]. Binder degradation forms a layer of LiF on the surface of the electrode, which deteriorates the clog within the electrode and reduce the space for the desired discharge product Li₂O₂. Hence, binder-free electrode design will be an effective way to avoid the formation of LiF. Intense research efforts have been focused on addressing the

^{*} Corresponding author. Tel./fax: +86 21 51630320.

^{**} Corresponding author.

E-mail addresses: zl-liu@imre.a-star.edu.sg (Z. Liu), asyu@fudan.edu.cn (A. Yu).

^{0378-7753/\$ -} see front matter © 2013 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.jpowsour.2013.05.100

challenges that limit the utility of lithium-oxygen batteries. Carbon nanotube/nanofiber buckpapers [7,19], all-carbon-nanofiber electrodes [20], free-standing type electrode composed of Co₃O₄ catalyst and Ni foam current collector [21], free-standing hierarchically porous carbon derived from grapheme oxide gel in nickel foam [22] have been applied in lithium-oxygen batteries, which yield high capacities and cycle performance.

Recent work has reported that nitrogen-doped carbon powder exhibits excellent electrocatalytic activity for oxygen reduction reaction and improvement to the discharge capacity [23–25]. In this work, we synthesize a new class of carbon electrodes, which are based on nitrogen-doped carbon nanotubes growing directly on Ni foam current collector (abbreviated as N-CNTs@Ni). Without the assist of binder, it could be used as the air electrode in the lithiumoxygen batteries immediately. The electrochemical examination demonstrated that the binder-free electrode delivered much higher special capacity and rate performance, comparing to the N-CNTs electrode.

2. Experimental

2.1. N-CNTs@Ni electrodes synthesis

N-CNTs@Ni electrodes were synthesized by a floating catalyst chemical vapor deposition (FCCVD) method according to the literature [25–27]. Ferrocene (99%, Aladdin) was used as the growth catalyst precursor and melamine (99%, Sinpharm Chemical Reagent Co., Ltd) was used as the nitrogen and carbon source. Typically, a mixture of 50 mg ferrocene and 1.5 g melamine in a combustion boat was placed at the upstream zone of the quartz tube (the distance from the combustion boat to a quartz-tube center: ~15 cm); a piece of Ni foam substrate was located in the center of the quartz-tube. Before the furnace was heated, Argon (99.999% in purity) was introduced into the heating system to drive the air in the tube out. Then the system was heated to 550 °C at a rate of 15 °C min⁻¹ and held at the temperature for 5 min. Then the furnace was heated to 950 °C, held for 15 min and allowed to cool down to the room temperature naturally.

2.2. Physical characterization

The morphologies of binder-free N-CNT electrodes were observed by field emission scanning electron microscopy (FE-SEM, Hitachi S-4800A) and transmission electron microscopy (TEM, JEM-2100F). Structures of the as-prepared electrode were characterized by a Bruker D8 Advance X-ray diffractometer using Cu K α radiation at a scan rate of 5° min⁻¹. A Kratos Axis Ultra X-ray photoelectron spectrometer (Al K α source) was employed to record the XPS spectra. N₂ adsorption/desorption isotherms were obtained using a Micromeritics Tristar 3000. Fourier-transform infrared reflection (FTIR) measurements were carried out on a Shimadz IRPrestige-21 FTIR spectrometer using KBr pellet. Raman scattering spectra were constructed on a HORIBA Scientific LabRAM-1B Raman spectrometer system equipped with a 632.8 nm laser.

2.3. Electrochemical measurement

The N-CNTs@Ni electrodes were utilized in lithium-oxygen batteries without any additional binders or catalysts. For charge/ discharge tests, lithium-oxygen batteries were constructed in an argon atmosphere glove box (H₂O \leq 10 ppm) using Swagelok batteries with an air window of 78.5 mm². They were assembled by stacking a Li foil, a Celgard 3500 membrane and N-CNTs@Ni electrodes. The nonaqueous electrolyte consisted of 1 M LiPF₆ in dimethyl sulfoxide (DMSO). Discharge/charge measurements were performed on a Land cycler (Wuhan Jinnuo Electronic Co. Ltd.) in the voltage range of 2.0–4.3 V vs. Li⁺/Li at various discharge current densities.

Before each test, there was a 2 h rest to allow the batteries to reach oxygen equilibrium between the ambient environment and the electrode. All of the tests were performed at room temperature.

3. Results and discussion

3.1. Morphology and structure of the N-CNTs@Ni electrodes

As is shown in Fig. 1a, a visible black coating in the whole nickel foam was clearly observed after chemical vapor deposition. The results of XRD patterns confirmed the coating of N-CNTs. The diffraction peaks at around 26.4° correspond to (002) facet of hexagonal carbon. From the low-magnification SEM image of the N-CNTs@Ni electrode, the skeleton of Ni foam is uniformly entangled by N-CNTs. High-magnification observation showed that the diameters of the N-CNTs were on the order of 60 nm. The typical bamboo-like structure demonstrates that nitrogen was introduced into the carbon network [24]. These N-CNTs were loosely packed and formed binder-free structures, leaving large interconnected tunnels throughout the entire electrode depth. These favorable tunnels and the pores among the Ni foam facilitate oxygen diffusion during the discharge process and provide enough void volume for the discharge product deposition.

The XPS survey spectrum further confirms the successful doping of nitrogen. As is shown in Fig. 2a, three strong peaks at 286, 400, 534 eV are attributed to C 1s, N 1s and O 1s, respectively. Meanwhile, a few other peaks are observed in the survey scan, which could be assigned to Ni 3p spectrum (the small peak around 66.8 eV) and the Ni_{KLL} Auger peaks (the peaks around 481.6 eV, 460.8 eV and 409.5 eV). The high-resolution N 1s peak listed in the inset of Fig. 2b indicates that covalent C–N bonds were doped in three forms, which correspond to pyridinic N (398.6 \pm 0.3 eV), pyrrolic N (400.3 \pm 0.3 eV) and graphitic N (401.3 \pm 0.3 eV) [28]. Primarily, nitrogen can play the role of n-type carbon dopant, which assists in the formation of disordered carbon nanostructures and therefore facilitates the ORR process [29].

Fig. 3 shows the N₂ adsorption/desorption isotherms curve of the N-CNTs@Ni electrode. Owing to the much heavier atomic weight of Ni foam, its contribution to the BET surface area could be negligible. The N₂ adsorption/desorption isotherms present type IV shape with a surface area of 42 m² g⁻¹. The hysteresis loop in the P/P0 range of ~0.4–1.0 is indicative of mesoporosity in addition to the presence of microporosity.

3.2. Electrochemical performance

The charge–discharge measurement was carried out in the voltage range of 2.0–4.3 V for the N-CNTs@Ni electrodes at the current densities of 0.05 mA cm⁻¹. As is shown in Fig. 4a, the N-CNTs@Ni electrodes exhibit a specific capacity of 1814 mAh g⁻¹, which are normalized to the weight of the air electrode excluding the current collector. Previous studies have been reported by fabricating the air electrode with the addition of binder and N-CNTs [24]. If all the mass of the active components (carbon + binder) in the electrode is considered, the N-CNTs electrodes deliver an initial capacity of 779 mAh g⁻¹ at the current density of 75 mA g⁻¹, which is comparable to rates of 0.05 mA cm⁻² in our work. Obviously, the N-CNTs@Ni electrodes have a much higher first specific capacity than that of N-CNTs electrode, even more than 2 times that of N-CNTs. The average discharge plateau of the N-CNT@Ni electrode is 2.68 V, higher than that of N-CNTs electrode by about 160 mV.

Download English Version:

https://daneshyari.com/en/article/7740680

Download Persian Version:

https://daneshyari.com/article/7740680

Daneshyari.com