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a b s t r a c t

Plane strain models of polycrystalline microstructures are investigated using strain gradient plasticity
(SGP) and a grain boundary (GB) deformation mechanism. The microstructures are constructed using a
non-linear constrained Voronoi tessellation so that they conform to a log-normal distribution in grain
size. The SGP framework is used to model the grain size dependent strengthening and the GB defor-
mation results in a cut-off of this trend below a certain critical grain size. Plastic strain field localization is
discussed in relation to the non-local effects introduced by SGP and a material length scale. A modifi-
cation of the HallePetch relation that accounts for, not only the mean grain size, but also the statistical
size variation in a population of grains is proposed.

� 2013 Elsevier Masson SAS. All rights reserved.

1. Introduction

The grain size has a large impact on the yield strength of poly-
crystalline metals and alloys, as has efficiently been deployed to
advance the development of higher strength materials by reducing
the grain size. A large amount of experimental evidence exists for
this, and to mention a few, the grain size dependent yield stress in
Ni for a wide range of experiments are reviewed in Conrad and
Narayan (2002) and similarly for Cu in Conrad (2004). In Ohno
and Okumura (2007), experiments on Al, Cu, Ni and stainless and
IF steels are compiled and also in Bouaziz (2010) data for IF steels
and pure iron are reproduced. However, reducing the grain size
without control of the grain size variation may not result in the
anticipated gain, as an increase in variation seems to counteract a
decrease in grain size. Experiments that take into account the
importance of the microstructural distribution are not abundant
but a few reports related to this is the work of Kurzyd1owski and
Bucki (1993) on stainless steel, the computational study related to
experiments in Zhu et al. (2006) and a study on Ni in Dalla Torre
et al. (2002). To what extent the variation in grain sizes affects
the overall mechanical properties is not entirely clear as it also
depends on the complex features of the grain boundaries. In tests
on several sets of Al with similar grain size, but with different

characteristics of the grain boundary (GB), Sun et al. (2005) observe
that influence of the GB features on the mechanical properties may
be significant.

In crystalline metals the microstructure determines many of the
mechanical properties. As a corollary themechanical properties of a
material specimen can be controlled if the microstructure can be
controlled. The elastic moduli of a polycrystal is determined by the
binding energy of the atoms in the crystal lattice, and the micro-
structure will mainly contribute so that these are averaged out to
make the material isotropic on the macroscopic level. For proper-
ties pertaining to plastic processes the microstructure has a more
profound effect. The difference in yield and post-yield behavior
between a single- and polycrystal are far more than a statistical
averaging operation. The introduction of grains, and thus also of
grain boundaries, enables several microstructural deformation
mechanisms that would not be possible in a single crystal. Themain
deformation features introduced by the presence of GB are the local
resistance to plastic flow (i.e. barriers to dislocation motion) and at
smaller grain sizes the grain boundaries appear to act as the main
channels of inelastic deformation, see for instance the reviews by
Kumar et al. (2003) and Meyers et al. (2006).

From a continuum mechanics modeling perspective grain size
dependent flowproperties can be captured by use of strain gradient
plasticity (SGP) theories, see Evans and Hutchinson (2009) for a
recent assessment. The use of gradient enhanced theories for
modeling is based on current understanding of plastic deformation
mechanisms in single- and poly-crystals. It is for instance well
established that a geometrically necessary dislocation (GND) den-
sity, rGND, is proportional to the lattice curvature and therefore to a
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gradient of plastic strain (Nye (1953), Ashby (1970), Arsenlis and
Parks (1999) and Kysar et al. (2010)). A dislocation density
without a net Burgers vector is characterized as a statistically stored
dislocation (SSD) density, rSSD, and can be associated with the
plastic strain at the material point. In the Taylor hardening model
the flow stress on a slip system depends on the dislocation density
and since there is no way to distinguish if an individual dislocation
is a GND or a SSD both dislocation densities should enter into the
hardening relation. Therefore it is reasonable to assume that on
length scales where the material experiences large plastic strain
gradients, hardening should depend not only upon the accumu-
lated plastic strain, but also on the local plastic strain gradients.
Therefore, SGP can be used to capture the increased hardening rate
from a large accumulation of GNDs.

Internal barriers to dislocation motion will, during plastic
distortion of a structure, introduce local gradients. A common
model for this is the so called pile-up model where dislocations of
equal sense, i.e. a dislocation distribution with a non-zero Burgers
vector, are pinned against a grain boundary. This process of grain
boundary strengthening will raise the macroscopic yield point of a
material with sufficiently small grains and is usually referred to as
the HallePetch effect (Hall, 1951; Petch, 1953). This type of initial
strengthening due to grain size appears naturally within a SGP
framework when explicit grain boundary models are introduced.

In this paper the combined effects of grain size and its variation
on the yield strength in polycrystalline metals will be investigated,
but we have opted to neglect any contributions due to increased
hardening in order to simplify our model. The model explored by
the present authors in Dahlberg et al. (2013), based on a strain
gradient plasticity framework with internal energetic interfaces
allowing for an irreversible sliding/separation deformation mech-
anism, will be employed. In that study the influence of grain size on
plastic flow properties in a constant sized grain (CSG) microstruc-
ture was investigated by analyzing a columnar grain structure
composed of regular hexagons. To generate realistic grain struc-
tures with desired size variation, a method based on constrained
Voronoi tessellation has been developed. Specifically the isotropic
strain gradient plasticity by Gudmundson (2004) will be used for
the grain interiors and an interface description for the grain
boundaries proposed in Dahlberg and Faleskog (2013) and
Dahlberg et al. (2013) which builds on the formulation in Fleck and
Willis (2009b). Modeling of grain structures with emphasize on
grain size distributions have been performed by Zhu et al. (2006),
Berbenni et al. (2007) and Massart and Pardoen (2010). As in this
study, grain boundaries are often modeled as thin interfaces.
However, very few attempts to combine the two mechanisms of
grain boundary sliding and plastic flow resistance. Previous work
relevant to this study can be found in Fredriksson and Gudmundson
(2007), Pardoen and Massart (2012), Wei and Anand (2004) and
Gurtin and Anand (2008).

We start by a short review of experimental observations made
to describe grain size distribution and from that a method based on
Voronoi tessellation is proposed and employed to construct real-
istic columnar grain structures. The constitutive framework is
described next. Five geometrically different microstructures, in
terms of grain size variation, were analyzed and the outcome is
presented in the Section on results. Finally some concluding re-
marks are given.

2. Modeling of polycrystalline grain structures

2.1. Grain size distribution

The population of grains in polycrystalline metals is of stochastic
nature, where the grain size, D, can be treated as a random variable.

Important statistical parameters characterizing the population of
grains are then the mean size, D0, and the standard deviation, SD,
and some notion of the type of distribution. When it comes to the
distribution there is now a substantial amount of experimental
studies that show that the variation of grain volumes, and also the
variation of grain sizes, in metallic materials sufficiently well can be
described by a log-normal distribution. This appears to be valid in
the whole range from microcrystalline metals (mc: D0 > 1 mm) to
nanocrystalline metals (nc; D0 < 100 nm) including ultrafine
crystalline metals (ufc) in between. In this context, a useful mea-
sure to identify geometrically similar polycrystals is the coefficient
of variation, cV ¼ SD/D0, as pointed out by Kurzyd1owski and Bucki
(1992) (they phrase cV in terms of variation of grain volume
instead). To mention some experimental observations of interest,
reported values of cV in mc metals are: about 0.6 in recrystallized Ti
(Okazaki and Conrad, 1972); 0.34e0.88 in recrystallized Al (Rhines
and Patterson, 1982); 0.16e0.38 in Zn, Al, and ferritic and austenitic
stainless steels (Núñez and Domingo, 1988; Kurzyd1owski and
Bucki, 1992). Values found in ufc and nc metals are: 0.32e0.46 in
Ni-foils (Dalla Torre et al., 2002); 0.34e0.88 Cu, Ni, Fe and Co
(Phaniraj et al., 2007 and references therein). In conclusion, the
interval 0:2 � cV � 0:9 seems to capture observations made for a
vast number of polycrystals with D0 ranging from mc to nc metals.

A log-normal distribution of grain size, D, is described by the
probability density function

fDðD;DM; SNÞ ¼ 1
SN
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where DM is the median value (geometric mean) and SN is
dimensionless and related to the standard deviation. The distri-
bution (1) is referred to as a number-weighted or true size distri-
bution as opposed to a volume weighted distribution, see
discussion in Bucki and Kurzyd1owski (1993) and Yu et al. (1998).
The expected value (arithmetic mean), here identified as the mean
grain size, is defined as
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and the standard deviation given by
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Hence, the coefficient of variation can be expressed as

cV ¼ SD=D0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
exp

�
S2N
�
� 1

r
: (4)

By assuming that the grains are self similar in shape, it follows
from the change-of-variable rule that the volume distribution also
will be log-normal distributed. Thus, using the transformation
V ¼ kVD

3, where kV is defined by the shape of a grain (e.g. kV ¼ p/6
for a sphere), the volume distributed coefficient of variation (cvolV ) is
related to the size distributed coefficient of variation as

cV ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ ðcvolV Þ2Þ1=9 � 1

q
, see derivation in Appendix A. This

relation was used to convert reported cvolV values in some of the
references cited above to the cV values summarized here.

Since the analysis in the current work was limited to planar (2D)
columnar grain structures, an area distribution corresponding to
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