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< SOH and RUL estimation of a lithium-ion battery with a support vector machine.
< New method for training data processing by load collectives.
< Estimation accuracy over lifetime approved on real driving profiles.
< Application on-board a battery management system conceivable.
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a b s t r a c t

The accurate estimation of state of health (SOH) and a reliable prediction of the remaining useful life (RUL)
of Lithium-ion (Li-ion) batteries in hybrid and electrical vehicles are indispensable for safe and lifetime-
optimized operation. The SOH is indicated by internal battery parameters like the actual capacity value.
Furthermore, this value changeswithin the battery lifetime, so it has to bemonitored on-board the vehicle.
In this contribution, a newdata-driven approach for embeddingdiagnosis andprognostics of battery health
in alternative power trains is proposed. For the estimation of SOH and RUL, the support vector machine
(SVM) as a well-known machine learning method is used. As the estimation of SOH and RUL is highly
influenced byenvironmental and load conditions, the SVM is combinedwith anewmethod for training and
testing data processing based on load collectives. For this approach, an intensive measurement investi-
gation was carried out on Li-ion power-cells aged to different degrees ensuring a large amount of data.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

The most limiting factor of electric and hybrid vehicles popu-
larization in means of transport is currently the vehicle’s battery.
The battery increases the price of the vehicle, thus, it becomes
more expensive compared to conventional vehicles [1,2]. Because
of many advantages, Lithium-ion (Li-ion) batteries are the most
used battery type in hybrid and electric vehicles, nowadays [3].
Since this technology is present on the market for only a relatively
short period, not all its characteristics are well-known. Gaining
more knowledge about battery lifetime behavior would eventu-
ally result in the development of cost-effective and long lasting
batteries.

However, independent from battery design, environmental
impacts and dynamical cycling will always push the battery aging
and thereby impede the battery in its maximum performance over
lifetime. Therefore, it is always desirable to monitor the underlying
degradation to be able to track the actual performance and take
countermeasures if developing faults occur. This task is called health
diagnosis. A recent summaryonmethods for Li-ionbattery diagnosis
can be found in Ref. [4]. Prognostics for batteries, on the other hand,
predict the remaining useful life (RUL), i.e. how soon a battery pack
component (e.g. cells) will fail or reach a level that cannot guarantee
satisfactory performance. Diagnosis and prognostics, therefore, are
two integral parts in realizing a battery health monitoring system.

Health monitoring embedding diagnosis and prognostics for
machinery has gained much attention in the research community
in recent years [5,6]. However, an electro-chemical system is
fundamentally different from a mechanical system in various
aspects. The electro-chemical reactions inside a Li-ion battery pack
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are almost inaccessible by using common sensor technologies.
Therefore, the most available monitoring data collected from Li-ion
batteries are from terminal behavior such as voltage, current, and
temperature. Finally, compared to mechanical systems, the opera-
tion profiles of Li-ion batteries show much more dynamics. A good
example for that is a hybrid vehicle, where the Li-ion battery
condition is affected by the driver’s behavior and environment.
Factors affecting the performance and health of Li-ion batteries
include aging-dependent capacity loss, capacity imbalance among
battery cells, self-discharge, etc. Therefore, the development of
appropriate methodologies and algorithms for monitoring these
values have to take into account the uniqueness of Li-ion battery
system [7].

The permanent reliable operation of the battery requires these
monitoring algorithms to be implemented on-board the vehicle
within the battery management system (BMS) [8]. For choosing
appropriate algorithms, compromise needs to be made between
their complexity and their diagnosis and prognostics accuracy/
capability.

Several approaches for on-board suitable algorithms exist today.
The usage of model-based tracking methods is a common way to
achieve desired results [4]. The usage of Kalman filtering with
electro-chemical or electrical equivalent-circuit models for moni-
toring was reported in a lot of works, e.g. Refs. [9,10]. But multiple
sources of errors like sensor offsets, degrading sensor fidelity, or the
quality of measured data impede this estimation, especially when it
is used on-board a vehicle with reduced computation capabilities.
Automated reasoning schemes based on neuro-fuzzy and decision
theoretic methods, like Autoregressive Integrated Moving Average
(ARIMA), have been investigated for both diagnostics and prog-
nostics tasks [11]. Not disclaiming the work done before, it still
remains difficult to accurately monitor the battery health or predict
the remaining useful life under arbitrary environmental and load
conditions.

At this point, the usage of data-driven methods is convenient
due to their ability to transform high-dimensional and noisy
environmental data into lower-dimensional information for diag-
nostics and, especially, for prognostics tasks [12]. In this contribu-
tion, a new data-driven approach is developed for embedding
diagnosis and prognostics of battery health in automotive appli-
cations. For the estimation of SOH and RUL, one of today’s most
powerful and popular machine learning algorithms, the support
vector machine (SVM), is combined with a completely newmethod
for data processing. The input and output vectors of the required
SVM learning data set are generated by processing the measured
data through load collectives. As the estimation of SOH and RUL is
strongly influenced by environmental, ambient, and load condi-
tions, this method processes the data in respect to these depen-
dencies, including even the operation history. Furthermore, to
ensure a large amount of training and testing data, an intensive
measurement investigation was carried out on automotive
Lithium-ion power-cells aged to different degrees.

The following sections will expand more on the chosen algo-
rithm in Section 2, our implementation approach in Section 3, the
experimental setup and corresponding results in Section 4, and
concludes with a summary in Section 5.

2. Intelligent battery health monitoring

2.1. Defining battery health

Usually, the term state of health (SOH) is used to characterize
the battery health status. The SOH describes the physical condition
of the battery, which is commonly characterized by the loss of rated
capacity:

SOH ¼ Cact � CEOL
Cnom � CEOL

$100% Cact � CEOL: (1)

Here, Cact is the actual capacity of the battery and Cnom repre-
sents the nominal capacity of a brand-new battery. For the Eq. (1),
an end of life (EOL) capacity CEOL at SOH¼ 0% has to be defined, too.
In the battery manufacturing industry, this value is often reached if
the actual capacity drops below 80% of its initial value

CEOL ¼ 0:8$Cnom: (2)

However, the SOH value declines as a function of time through
battery usage and aging from 100% to 0%. The number of chargee
discharge cycles related to the specific performance (until i.e. 80%
of the nominal capacity is reached) is the remaining useful life
(RUL) of the battery. In this work, the degradation trend of the time-
varying capacity is tracked, and the number of cycles to SOH¼ 0% is
estimated to realize the proposed approach.

2.2. Support vector regression

The support-vector-machines (SVMs) have been applied for
classification problems in various domains of pattern recognition. A
comprehensive introduction can be found e.g. in Refs. [13,14].
However, the SVM can also be applied to regression problems,
although regression is inherently more difficult than classification.
The SVM used for regression as a non-linear estimator is more
robust than a least-squares estimator because it is insensitive to
small changes [15].

Let the training data set be given with (x1, y1),.,(xl, yl) 3 X � R,
where X denotes the space of input patterns (e.g. q-dimensional
space X ¼ Rq). The goal of ε support vector regression (ε-SVR) is to
find a function f(x)that has a ε deviation at the most from the target
patterns yi for all training data, while at the same time the function
is as flat as possible. In other words, attention is not paid to the
errors as long as they are smaller than ε, but also deviations bigger
then ε are not accepted. However, sometimes it is not possible to
find such a function, or it is desirable to allow some errors. For this
purpose, the so-called slack variables xi; x

*
i are introduced in order

to cope with otherwise unsolvable optimization problem
constraints. In the case that the demanded function is linear,

f ðxÞ ¼ hu; xi þ b;u˛X; b˛R; (3)

the optimization problem has the form

min
u

1
2

���u2
���þ C

Xl

i¼1

�
xi þ x*i

�

subject to

8>>>><
>>>>:

yi � ku; xik � b � εþ xi

ku; xik þ b� yi � εþ x*i

xi; x
*
i � 0:

(4)

The parameter C > 0 determines the trade-off between flatness
of the function f(x) (i.e. simplicity of the function) and the amount
of deviations higher than ε that is tolerated. Tolerating deviations
can be represented by the ε-insensitive loss function jxj

ε
:

jxj
ε
¼

�
0 if jxj � ε

jxj � ε otherwise:
(5)

Graphically, this is shown in Fig. 1. Only points outside the
shaded areas increase the amount of deviation.

Eq. (4) represents a dual optimization problem which is much
easier for solving, and, more importantly, makes it possible to apply
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