ELSEVIER

Contents lists available at SciVerse ScienceDirect

Journal of Power Sources

journal homepage: www.elsevier.com/locate/jpowsour

Preparation of high performance carbon-coated LiMnPO₄ nanocomposite by an acetate-assisted antisolvent precipitation method

Kai Su, Feng Liu*, Jitao Chen*

Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China

HIGHLIGHTS

- ▶ A novel antisolvent precipitation method is developed to synthesize LiMnPO₄ material.
- ► The precursor is composed of Mn₃(PO₄)₂ and Li₃PO₄ nanoparticles.
- ▶ The carbon-coated LiMnPO₄ with the particle size of 60 nm is obtained.
- ▶ The C-LiMnPO₄ material exhibits excellent rate capability and stable cyclability.

ARTICLE INFO

Article history:
Received 31 October 2012
Received in revised form
31 December 2012
Accepted 9 January 2013
Available online 18 January 2013

Keywords: Lithium-ion battery Lithium manganese phosphate Antisolvent precipitation Nanocomposite Cathode material Rate capability

ABSTRACT

A novel acetate-assisted antisolvent precipitation method combined with ball milling and heat treatment is developed to synthesize nanosized carbon-coated LiMnPO₄ material. The precursor prepared by the precipitation process is composed of $Mn_3(PO_4)_2$ and Li_3PO_4 nanoparticles. After heat treatment of the ball-milled mixture of precursor and glucose, the carbon-coated LiMnPO₄ with the particle size of around 60 nm is obtained. The LiMnPO₄ nanocomposite synthesized at the optimized conditions delivers specific discharge capacities of 154, 134, 120, 90, and 61 mAh g⁻¹ at the rates of 0.05, 0.2, 1, 5, and 10C, respectively, which are comparable to some of the best reported C-LiMnPO₄ materials prepared by other synthesis methods. This material further exhibits good cycling stability, especially at high discharge rates of 5C and 10C.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Lithium-ion batteries as the front-runners in energy storage systems have attracted much attention due to the growing market demand for portable electronic devices and electric vehicles [1-3]. In 1997, Padhi et al. introduced olivine-type lithium transition metal phosphates LiMPO₄ (M = Fe, Mn, Co, Ni) as desirable cathode materials owing to their outstanding properties such as high stability, environmental benignity, and low cost [4]. Among them, LiFePO₄ has been extensively studied and successfully commercialized [5-8]. Given the great success of LiFePO₄, LiMPO₄ (M = Mn,

Co, Ni) with a higher redox potential is favored in the recent research. The high voltages of LiCoPO₄ (4.9 V vs. Li⁺/Li) and LiNiPO₄ (5.1 V vs. Li⁺/Li) materials are beyond the stable electrochemical windows of present electrolytes, thus developing LiMnPO₄ (4.1 V vs. Li⁺/Li) seems to be more promising.

However, the inherently low ionic and electronic conductivities of LiMnPO₄ render it difficult to achieve excellent electrochemical activity [9]. Inspired by the previous research on LiFePO₄, the strategies including carbon coating [10], ion-doping [11], and particle size reduction [12,13] have been adopted to overcome these limitations. Various methods such as sol—gel [12], polyol [14], hydrothermal [15], solvothermal [16], ultrasonic spray pyrolysis [17], and precipitation [18–22] have already been attempted to prepare nanosized carbon-coated LiMnPO₄ (referred to as C-LiMnPO₄ hereafter). Of the reported methods, the precipitation process is

^{*} Corresponding authors. Tel.: +86 10 62761187; fax: +86 10 62751708. E-mail addresses: liufeng@pku.edu.cn (F. Liu), chenjitao@pku.edu.cn (J. Chen).

a commercially viable one due to its simplicity and low cost. Delacourt et al. synthesized $\sim 100~\rm nm$ LiMnPO₄ particles by a direct precipitation technique [18]. Liu et al. used the 100–300 nm thick plate-like NH₄MnPO₄·H₂O as the precursor to prepare LiMnPO₄ which preserved the morphology of NH₄MnPO₄·H₂O [19]. Kim et al. synthesized 70 \times 150 nm–100 \times 300 nm LiMnPO₄ particles through a sequential precipitation [20]. In spite of these efforts, the LiMnPO₄ materials prepared by precipitation methods only exhibit moderate specific capacity and limited rate capability. Therefore, it is a great challenge to develop a new precipitation method to further decrease the particle size of the LiMnPO₄ material for improving its capacity, especially at high rates.

Antisolvent precipitation is a robust and scalable method mainly used in the preparation of nanoscale pharmaceutical ingredients [23–26]. According to classical precipitation theory, the formation mechanism of precipitate involves generation of supersaturation, nucleation, and particle growth. The kinetics of the latter two processes would determine the final size of precipitated particles. In an antisolvent precipitation process, the antisolvent is used to lower the solubility of compounds in the liquid solvent. Adding the solution of compounds to the antisolvent would generate the high supersaturation, which enables formation of nuclei more favorable than particle growth, yielding the precipitate with small particle size [23,24]. To our knowledge, antisolvent precipitation has not been used to prepare cathode materials. In the current efforts, we aim at developing a novel method based on antisolvent precipitation to synthesize ultrafine C-LiMnPO₄ composite.

Herein, we present an acetate-assisted antisolvent precipitation method combined with ball milling and heat treatment to synthesize C-LiMnPO₄ nanocomposite. The aqueous solution containing Mn²⁺ and PO₄³⁻ is added to the ethanol solution of lithium acetate for the preparation of the nanosized precipitate as the precursor. Ethanol serves as the antisolvent. Subsequently, the precursor is ball-milled with glucose and heat-treated to obtain C-LiMnPO₄. The compositions and morphologies of the precursor and LiMnPO₄ samples are studied by scanning electron microscopy, energy dispersive X-ray spectroscopy, and transmission electron microscopy. The synthetic conditions of C-LiMnPO₄ such as heating temperature, heating time, and glucose content are optimized. The C-LiMnPO₄ nanocomposite prepared by this method displays excellent rate capability and stable cycling performance.

2. Experimental

2.1. Reagents

Lithium acetate dihydrate (LiAc \cdot 2H $_2$ O) and glucose were purchased from Beijing Yili Fine Chemical Company (Beijing, China). Manganese acetate tetrahydrate (Mn(Ac) $_2\cdot$ 4H $_2$ O) was obtained from Xilong Chemical Limited Company (Shantou, China). H $_3$ PO $_4$ (85 wt%), HCl (37 wt%), and anhydrous ethanol were purchased from Beijing Chemical Reagent Company (Beijing, China). All these reagents were of analytical grade and used as received without further purification.

2.2. Synthesis procedure

The aqueous solution was prepared by adding 14.7 g of $Mn(Ac)_2 \cdot 4H_2O$, 4.08 mL H_3PO_4 , and 6 mL HCl to 50 mL deionized water. 600 mL ethanol acted as the antisolvent, in which 26.4 g of $LiAc \cdot 2H_2O$ was dissolved. The aqueous solution was dropped slowly to the ethanol solution at 70 °C under vigorous stirring, and then the mixture was kept at 70 °C for 3 h. The obtained white precipitate was washed several times with ethanol and dried in an oven at 60 °C for 4 h. Subsequently, the precipitate was ball-milled

with or without glucose for 6 h and sintered at 550 $^{\circ}$ C for 5 h in N₂ atmosphere to prepare C-LiMnPO₄ and bare LiMnPO₄, respectively.

2.3. Characterization of morphology, structure, and composition

The crystal structures of bare LiMnPO₄ and C-LiMnPO₄ were identified by a D/max2400 power X-ray diffractometer (XRD) (Rigaka, Japan) with Cu-K α radiation (λ = 1.5405 Å) in a 2 θ range of 10°-70°. The morphologies of the prepared nanomaterials were observed with an S-4800 scanning electron microscope (SEM) (Hitachi, Tokyo, Japan) and a Tecnai G2 F20 transmission electron microscope (TEM) (FEI, Portland, USA). Energy dispersive X-ray spectroscope (EDS) was applied to analyze the elemental composition of the precipitate. Carbon contents of the composites were determined by a Vario EL III elemental analyzer (Elementar, Germany). An ASAP2010 apparatus (Micromeritics, USA) was employed to estimate the specific surface areas of bare LiMnPO₄ and C-LiMnPO₄ powders.

2.4. Electrochemical measurements

C-LiMnPO₄ (80 wt%), carbon black (10 wt%), and poly(vinylidene fluoride) binder (10 wt%) in *N*-methylpyrrolidone were stirred into a homogeneous slurry. The obtained mixture was casted on aluminum foil and dried under vacuum at 100 °C overnight. Round disks with a diameter of 12 mm were cut for electrochemical characterizations. The electrodes typically had an active material loading of 2.8 mg cm⁻² and volumetric density of 1.1 g cm⁻³. Cointype cells were assembled in an argon-filled glove box $(O_2 \le 50 \text{ ppm}, H_2O \le 0.1 \text{ ppm})$. Lithium foil served as both anode and reference electrode. Mixture of ethylene carbonate and diethyl carbonate (1:1, m/m) containing 1 M LiPF₆ was used as the electrolyte. The cells were charged in a constant current and constant voltage mode (galvanostatically charged to 4.5 V at a rate of 0.05C, then potentiostatically charged at 4.5 V till current drops to 0.01C), and then discharged to 2.5 V at a specific rate ($1C = 170 \text{ mAh g}^{-1}$) using a LAND battery test system. Cyclic voltammetry (CV) was operated on a CHI600D electrochemical workstation (Chenhua, Shanghai, China) between 2.5 V and 4.9 V at a scanning rate of 0.1 mV s^{-1} .

3. Results and discussion

3.1. Mechanism of the acetate-assisted antisolvent precipitation

The acetate-assisted antisolvent precipitation process for the preparation of the precursor is shown in Fig. 1. Mn(Ac)₂, H₃PO₄, and HCl are dissolved in deionized water to obtain a homogeneous aqueous solution. Then the aqueous solution is added to the ethanol solution of lithium acetate. Ethanol as the antisolvent induces the high supersaturation of Li₃PO₄ and Mn₃(PO₄)₂. Acetate in the ethanol as the proton acceptor further increases supersaturation while lithium ion acts as a precipitant to form Li₃PO₄. The high supersaturation created by acetate and antisolvent is supposed to lead a fast formation of nuclei and limited particle growth, yielding the precipitate with small particle size.

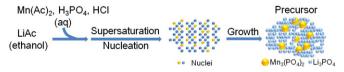


Fig. 1. Schematic illustration of the acetate-assisted antisolvent precipitation process.

Download English Version:

https://daneshyari.com/en/article/7740975

Download Persian Version:

https://daneshyari.com/article/7740975

<u>Daneshyari.com</u>