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a b s t r a c t

New two-dimensional and three-dimensional boundary element formulations of compressible visco-
elastic layers of arbitrary thickness are presented in this work. The formulations are derived in increasing
order of complexity for: (i) compressible isotropic layers, (ii) transversely isotropic layers, and (iii) fully
orthotropic layers. It is further shown that existing 2D and 3D models for incompressible isotropic layers
may be regarded as particular instances of case (i). The proposed formulations are based on Fourier series
and support any linear viscoelastic material model characterized by general frequency-domain master-
curves. These approaches result in a compliance matrix for the layer’s upper boundary, which includes
the effects of steady-state motion. This characterization may be used as a component in various problem
settings to generate sequences of high fidelity solutions for varying parameters. The proposed modeling
techniques are applied, in combination with appropriate contact solvers, to the rolling resistance of rigid
cylinders and spheres on compressible isotropic, transversely isotropic and orthotropic layers. The latter
case reveals that the dissipated power varies with the direction of motion, which suggests new ways of
optimizing the level of damping in various engineering applications of very high impact. Interesting
lateral viscoelastic effects resulting from material asymmetry are unveiled. These phenomena could be
harnessed to achieve smooth and ‘invisible’ guides across three-dimensional viscoelastic surfaces, and
hence suggest new ways of controlling trajectories, with a broad range of potential applications.

� 2013 Elsevier Masson SAS. All rights reserved.

1. Motivations and background

A three-dimensional boundary element formulation of an
incompressible viscoelastic layer of arbitrary thickness was pro-
posed by Zéhil and Gavin (2013b). This formulation was applied, in
combination with appropriate rolling/sliding contact algorithms
(Zéhil and Gavin, 2013a), to determine the resistance incurred by a
rigid sphere rolling, in steady-state, on such a layer.

The authors’ interest in rolling resistance initially stems from the
exploration of new damping principles suitable for the seismic
isolation of critical facilities. A recent studyconducted byHarveyet al.
(2013) on a Ball-N-Cone�rolling isolation bearing (WorkSafe
Technologies, 2012) addresses the benefits of damping in rolling
isolation systems. In order to limit the peak acceleration levels to

which sensitive equipment may be subjected to during the course of
an earthquake, higher levels of ‘soft’ damping can be achieved by
increasing the resistance to rolling or sliding of their seismic isolation
platforms. In practice, this damping principle can be implemented by
inserting a dampening material between contacting components of
the isolation system, in relativemotionwith respect to each other. For
instance, in the case of rolling isolation bearings, viscoelastic rubber
sheets can be inserted between the rigid roller (e.g. a sphere) and the
hard surfaces on which the rolling occurs (e.g. ‘dished’ or bowl-
shaped steel plates).

An early and approximate closed-form expression for the rolling
resistance Rr incurred by a rigid sphere rolling on a compressible
viscoelastic half-spacewas derived by Greenwood and Tabor (1958)
who integrated, under the small strain assumption, the horizontal
projection of the stationary normal stress distribution, as given by
Hertz (1881), over the front half of the contact ‘disk’, and evaluated
its work per unit distance of rolling. The proposed expression for
rolling resistance is in good agreement with experimental results
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presented by the authors for spheres moving slower than at 1 cm/s
under mean contact pressures below 2.76 MPa (i.e. 400 lb in�2).
This expression may be re-written as follows
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where P is the vertical load supported by the rolling sphere, and R
stands for its radius. Young’s modulus E and Poisson’s ratio n of the
layer’s material, as well as the loss fraction aGT of the input defor-
mation energy are taken as constants. Flom and Bueche (1959)
proposed an alternative simplified theory accounting for the in-
fluence of rolling speed and resulting in expressions that otherwise
confirm, for intermediate values of the dynamic loss factor (known
as tand), the dependencies of rolling resistance predicted by
Equation (1) on the vertical load P, the radius of the sphere R and
the layer’s stiffness. These expressions may be written in the
generic form
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where, as noted by Lakes (2009), aFB depends on tand and therefore
on the material parameters of the layer and on the frequency of
rolling. Based on the simplifying assumption that the dynamic
contact region has a similar size to that given by the static solution
of Hertz, Lakes also noted that an upper bound for the viscoelastic
rolling resistance of a rigid sphere is given by
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where E is interpreted as a dynamicmodulus at a circular frequency
u, proportional to Vs/R. Expressions (1)e(3) are furthermore
consistent in predicting that rolling resistance decreases with
Young’s modulus and that it is maximized by a Poisson ratio of zero.
Hence, based on this simple and qualitative reasoning, it may be
expected that relatively soft and compressible layers, with a Pois-
son ratio that it close to zero, would yield higher levels of resistance
and damping than harder layers or layers made of incompressible
materials (n z 0.5) such as rubbers.

The boundary element formulation presented in Zéhil and Gavin
(2013b) applies to incompressible and isotropic layers, which is
practically the case of most rubber-like materials. Compressible
materials are however characterized by one additional frequency-
dependent complex parameter, i.e. the complex Poisson ratio
n*(u), and can not be modeled with this formulation. Extending the
boundary element formulation to compressible layers is therefore
needed. In Section 4, a compressible isotropic formulation is
derived, in three dimensions, to answer this first need. This deri-
vation is somewhat akin to that proposed by Persson (2001) based
on Fourier transforms and applied in a simplified approach to the
rolling resistance of hard cylinders and sphere on a viscoelastic
layer (Persson, 2010). A two-dimensional formulation in plane
strain is deduced in Section 7 to complement the incompressible
formulations proposed by Qiu (2006, 2009).

Moving further, one may think of cork as an example of rela-
tively soft material characterized by a Poisson ratio that is close to
zero. In fact this material is used as a stopper for wine bottles
because it shows very little lateral expansion when it is com-
pressed. However, cork does not behave isotropically. Indeed, its
prismatic cells are packed in columns in the radial direction, which
constitutes a direction of symmetry of the cellular structure. Cork
may therefore be modeled as a transversely isotropic medium (e.g.

Rosa and Fortes, 1991). In order to achieve accurate rolling resis-
tance predictions on viscoelastic materials such as cork, with
different mechanical characteristics in the out-of-plane direction,
the boundary element formulation must further be extended to
polar anisotropic layers. This additional need is addressed in Sec-
tion 5 where a three-dimensional transversely isotropic formula-
tion is derived. This formulation is specialized further to plane
strain in Section 8.

On theotherhand, ahard-wearing layer cannot be too soft.Hence,
there seems to be a tradeoff between high resistance to rolling and
durability. Given the need to achieve optimal levels of damping un-
der specific conditions (of seismic hazard for instance) while main-
taining suitable service life expectancies, the future use of specially
designed layers made of viscoelastic metamaterials cannot be
excluded and should therefore be prepared. Man-made materials,
such as auxetic composites made of rubber-filled re-entrant honey-
combs for instance, are often characterized by different mechanical
properties in threeorthogonal directions. Predicting the resistance of
such materials to rolling and sliding would ultimately require
extending the boundary element formulation to fully orthotropic
layers. This need is fully addressed in Section 6.

2. Common setting

The different cases considered in this work share a common
setting, which is illustrated in Fig. 1: a mechanical load is translated
at constant speed Vs, in direction x, on a viscoelastic layer of arbi-
trary thickness H, attached to a rigid backing. The load is periodic in
directions x and y, with periods Lx and Ly, respectively. The coor-
dinate system Ox0y0z0 is fixed while Oxyz moves with the load.

3. A brief review of 3D linear viscoelasticity

Linear elasticity corresponds to a time-independent behavioral
material model characterized by the constitutive equation below,
also known as Hook’s law, written in indicial notation as

sij ¼ Cijklεkl; (4)

where sij, εij and Cijkl are components of the second order stress
tensor, the small-strain tensor, and the fourth order elasticity
tensor, respectively.

Alternatively, linear viscoelasticity is characterized by the
dependence of the elasticity tensor on time. The state of stress in a
linear viscoelastic material, subjected to a strain history of the form
εklðtÞ ¼ εklHðtÞ, where εkl are constant strain components and
Hð$Þ designates the Heaviside unit step function, is given by

sijðtÞ ¼ CijklðtÞεkl; t � 0: (5)

Fig. 1. General model and coordinate systems.
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