EI SEVIER Contents lists available at SciVerse ScienceDirect #### Journal of Power Sources journal homepage: www.elsevier.com/locate/jpowsour #### Short communication ## Solid-state synthesis of $LiCoO_2/LiCo_{0.99}Ti_{0.01}O_2$ composite as cathode material for lithium ion batteries Jinpeng Yu^{a,b}, Zenghui Han^a, Xiaohong Hu^a, Hui Zhan^{a,*}, Yunhong Zhou^a, Xingjiang Liu^b #### HIGHLIGHTS - ► We have fabricated a micron-sized LiCoO₂/LiCo_{0.99}Ti_{0.01}O₂ composite by solid-phase synthesis. - ▶ XPS measurement and SEM observation reveal a Ti concentration gradient in the composite. - ► The obtained LiCoO₂/LiCo_{0.99}Ti_{0.01}O₂ composite presents greatly enhanced cycling stability as well as rate capability. - ► DSC further indicates that the LiCoO₂/LiCo_{0.99}Ti_{0.01}O₂ composite has a better thermal stability than the bare LiCoO₂. #### ARTICLE INFO # Article history: Received 10 June 2012 Received in revised form 27 August 2012 Accepted 14 September 2012 Available online 11 October 2012 Keywords: Core-shell structure Layered compound Lithium batteries Solid-phase synthesis #### ABSTRACT We have fabricated a micron-sized $LiCoO_2/LiCo_{0.99}Ti_{0.01}O_2$ composite successfully by solid-phase synthesis, its core-shell structure has been proved by SEM and XPS observation. Electrochemical examinations show that comparing with $LiCoO_2$ and $LiCo_{0.99}Ti_{0.01}O_2$, the obtained $LiCoO_2/LiCo_{0.99}Ti_{0.01}O_2$ composite presents greatly enhanced cycling stability as well as rate capability. In addition, DSC measurement indicates that $LiCoO_2/LiCo_{0.99}Ti_{0.01}O_2$ has a better thermal safety than $LiCoO_2$. It is considered that all the improvement should be explained by the particular core-shell morphology of the $LiCoO_2/LiCo_{0.99}Ti_{0.01}O_2$ sample. © 2012 Elsevier B.V. All rights reserved. #### 1. Introduction The fabrication of the core-shell structure particles has attracted considerable attention in recent years because of their potential use for photonic crystals, catalysts, diagnostics, pharmacology, etc [1–3]. In particular, it has been producing important and profound effect on the development of lithium ion batteries for energy storage and EV applications, since this novel strategy is introduced for preparing electrode materials with improved performances [4–9]. It is also believed that the inorganics with high electro-activity is one of the best choices in various "shell" materials [7,10–14]. However, the coating procedures are usually complicated or require the use of expensive reactants, leading to difficulties in mass production. In view of commercial applications, a facile and cost-effective alternate is still required. LiCoO₂ is one of the most important cathode materials at the present time [15]. Nevertheless, its practical capacity of 140 mAh g⁻¹ is almost only half of the theoretical value and a further charge up to 4.3 V or higher voltage usually incurs severe capacity loss [16]. To overcome the bad cycleability under high upper-limit voltage charging, doping, as well as surface coating has been widely investigated and substantially proved to be an effective way [17–20]. However, for the doping strategy, the substituted phase of $\text{LiCo}_{1-x}\text{M}_x\text{O}_2$ (M = metal and transition metal ions) usually has lower average particle size than pristine LiCoO_2 [17,19,21–23], such as $\text{LiCo}_{1-x}\text{Ti}_x\text{O}_2$, which finally leads to lower volume specific energy density of the cell. Based on the above cognition and the requirement for mass production, we propose a high-temperature calcination route to obtain $\text{LiCoO}_2/\text{LiCo}_{0.99}\text{Ti}_{0.01}\text{O}_2$ composite with LiCoO_2 substrate and $\text{LiCo}_{0.99}\text{Ti}_{0.01}\text{O}_2$ surface layer. The preparation of $\text{LiCoO}_2/\text{LiCo}_{0.99}$. Ti_{0.01}O₂ composite is described in Section 2. Briefly, two annealing treatments are involved in the obtaining of LiCoO_2 core and then $\text{LiCoO}_2/\text{LiCo}_{0.99}\text{Ti}_{0.01}\text{O}_2$ composite. It is expected that the synthesis ^a College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China ^b National Key Laboratory of Power Source, Tianjin Institute of Power Sources, Tianjin 300381, China Corresponding author. Tel.: +86 27 68756931; fax: +86 27 68754067. E-mail address: zhanhui3620@126.com (H. Zhan). route can well deal with the balance between body-doping and surface coating approaches, and thus the materials with the similar particle size as pristine $LiCoO_2$ and improved cycling stability and rate capability can be obtained. Besides, the pristine $LiCoO_2$ and the doping phase of $LiCo_{0.99}Ti_{0.01}O_2$ were also prepared as the reference through a similar solid-state route. Their structural and electrochemical characteristics are investigated in terms of XRD, SEM, XPS and electrochemical measurements. #### 2. Experimental The LiCo_{0.99}Ti_{0.01}O₂ materials were prepared by high-temperature calcination from the mixture of Li₂CO₃, Co₃O₄ and TiO₂ in air, in which the molar ratio of Li:Co:Ti was 1.05:0.99:0.01. Excess Li₂CO₃ was used to compensate for the loss of Li during firing. The finely ground mixtures were first heated at 850 °C for 10 h and then annealed at 920 °C for another 10 h without intermediate grinding. LiCoO₂ was prepared through the same procedure except without TiO₂ adding. The synthesis of the LiCoO₂/LiCo_{0.99}Ti_{0.01}O₂ composite was as follows: the mixture of Li₂CO₃, Co₃O₄ and TiO₂ (molar ratio = 1.05: 0.99: 0.01) was blend with the as-prepared LiCoO₂, and then the mixture was also heated following the above-mentioned procedure. In the final product, the nominal molar ratio of LiCoO₂:LiCo_{0.99}Ti_{0.01}O₂ is 1:0.2. XRD analysis was conducted with XRD-6000 diffractometer (Shimadzu, Japan), Cu K α radiation and a scan rate of 4 °C min⁻¹. The morphology of the samples was observed on a Quanta 200 scanning electron microscope (SEM). The particle size and particle size distribution were determined further by laser scattering measurements (Mastersizer 2000, U. K.). X-ray photoelectron spectroscopy (XPS) data were obtained using an ESCALab250 electron spectrometer from Thermo Scientific Corporation with monochromatic 150 W Al Ka radiation. The base pressure was about $6.5 \times 10^{-10}\,\text{mbar}$. The binding energies were referenced to the C1s line at 284.8 eV from alkyl or adventitious carbon. Thermal characterization of the products was done on a Universal V4.3A TA DSC. The measurements were conducted in air from ambient temperature to 400 °C at a heating rate of 20 °C min⁻¹, and all electrodes were charged to 4.7 V for 8 h before being subjected to DSC measurement. Galvanostatic cycling was performed on 2016 coin cells. The cathode electrode was made by mixing 80 wt. % active material, 10 wt. % PTFE binder and 10 wt. % acetylene black, then pressing them on an aluminium mesh. Thus prepared electrode was dried at 150 °C for 12 h before the cell assembling. Metallic lithium was used as the anode. The electrolyte was 1 M LiPF $_6$ in a 1:1 volume ratio mixture of ethylene carbonate (EC)/dimethyl carbonate (DMC), and the separator was Celgard 2300 membrane. The cells were assembled in the argon filled glove box (MECABOX80-1"s", Switzerland). #### 3. Results and discussion The powder XRD patterns of LiCoO $_2$, LiCo $_{0.99}$ Ti $_{0.01}$ O $_2$ and the LiCoO $_2$ /LiCo $_{0.99}$ Ti $_{0.01}$ O $_2$ composite are compared in Fig. 1. All the powders have a well-defined hexagonal α -NaFeO $_2$ structure. No impurity phases, such as Co $_3$ O $_4$ or TiO $_2$ can be detected. But considering the small amount of Ti in the final product of LiCoO $_2$ /LiCo $_{0.99}$ Ti $_{0.01}$ O $_2$ composite or LiCo $_{0.99}$ Ti $_{0.01}$ O $_2$, this is not enough to exclude the existence of Ti-containing impurity at the grain boundary. Cell parameters are determined by Rietveld method, and the results are given in Table 1. Comparing with LiCoO $_2$, the other two phases do not show significant differences except the LiCo $_{0.99}$ Ti $_{0.01}$ O $_2$ sample has a slightly decreased cell volume. Grain size can be estimated from the FWHM value. Based on the Scherrer **Fig. 1.** XRD patterns of (a) LiCoO₂, (b) LiCoO₂/LiCo_{0.99}Ti_{0.01}O₂ composite and (c) LiCo_{0.99}Ti_{0.01}O₂. formula of $D_{hkl} = k\lambda/\beta \cos\theta$, grain size of LiCoO₂, LiCo_{0.99}Ti_{0.01}O₂ and LiCoO₂/LiCo_{0.99}Ti_{0.01}O₂ can be determined as 86.28 nm, 62.88 nm and 83.35 nm, respectively (FWHM value of the [104] peak was used in the calculation). Obviously, Ti doping leads to a reduced grain size. The variation in the particle size or particle morphology can be evidenced by SEM observation. From Fig 2, LiCoO₂ and LiCoO₂/LiCo_{0.99}Ti_{0.01}O₂ shows similar particle morphology and both appear as blocks, and their surface is quite smooth. Additionally, SEM images indicate that, as the particle size is concerned, LiCo_{0.99}. Ti_{0.01}O₂ is the smallest, while the pristine LiCoO₂ is the largest and LiCoO₂/LiCo_{0.99}Ti_{0.01}O₂ is in between. This observation is in agreement with the result of particle size distribution analysis in Table 2. Among the three studied samples, LiCoO₂/LiCo_{0.99}Ti_{0.01}O₂ shows the most uniform particle size distribution, and its average particle size is bigger than LiCo_{0.99}Ti_{0.01}O₂ but smaller than LiCoO₂. The data in Table 2 further implies that the packing density of the resulting samples should vary in the order of LiCoO₂ > LiCoO₂/LiCo_{0.99}Ti_{0.01}O₂ > LiCoO₉Ti_{0.01}O₂. SEM measurement reveals the particular morphology of the LiCoO₂/LiCo_{0.99}Ti_{0.01}O₂ composite. LiCoO₂/LiCo_{0.99}Ti_{0.01}O₂ composite was ground in an agate mortar and then subjected to SEM observation. Fig. 3a shows the SEM micrograph of the partially crushed particle. From the crack, we can discern two layers, the inner layer should be the LiCoO2 substrate and the outer layer should be the $LiCo_{0.99}Ti_{0.01}O_2$ shell. It is also noticed that the shell layer is not smooth but rather rough. We conjecture that the particular morphology is caused by the encapsulation of LiCoO2 substrate within the Li-Ti-Co oxide phase. Our speculation about the core-shell structure has been further confirmed by XPS measurements. Ar ion etching was used to examine the concentration depth profiles of the LiCoO₂/LiCo_{0.99}Ti_{0.01}O₂ powder. Fig. 3b shows the Ti2p and Co2p spectrum with different sputtering time. The intensity for Ti becomes lower gradually upon Ar⁺ etching. After 810s' etching, it is hardly visible, suggesting a Ti concentration **Table 1**Lattice parameters of LiCoO₂, LiCo_{0.99}Ti_{0.01}O₂ and LiCoO₂/LiCo_{0.99}Ti_{0.01}O₂ samples. | Sample | a (Å) | b (Å) | $V(\mathring{A}^3)$ | |--|--------|---------|---------------------| | LiCoO ₂ | 2.8168 | 14.0553 | 96.58 | | LiCo _{0.99} Ti _{0.01} O ₂ | 2.8159 | 14.0575 | 95.63 | | $LiCoO_2/0.2LiCo_{0.99}Ti_{0.01}O_2$ | 2.8169 | 14.0591 | 96.61 | #### Download English Version: ### https://daneshyari.com/en/article/7741319 Download Persian Version: https://daneshyari.com/article/7741319 Daneshyari.com