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a b s t r a c t

A Kirchhoff micro-plate model is presented based on the modified strain gradient elasticity theory to
capture size effects, in contrast with the classical plate theory. The analysis is general and can be reduced
to the modified couple stress plate model or classical plate model once two or all material length scale
parameters in the theory are set zero respectively. Governing equation and boundary conditions of an
isotropic rectangular micro-plate are derived using minimum potential energy principle. Various
boundary conditions including simply supported and clamped edges are covered by the analysis. The
extended Kantorovich method (EKM) which is an accurate approximate closed-form solution is applied
to solve the resulting sixth order boundary value problem. Application of EKM to the partial differential
equation (PDE) yields two ordinary differential equations (ODEs) in the independent x and y coordinates.
The resulted ODEs are solved in an iterative manner. Exact closed-form solutions are presented for both
ODEs in all of the iteration. It is shown that the method provides accurate predictions with very fast
convergence. Numerical results reveal that the differences between the deflection predicted by the
modified strain gradient model, the couple stress model and the classical model are large when the plate
thickness is small and comparable to the material length scale parameters. However, the differences
decrease with increasing the plate thickness. Validation of the presented EKM solution shows good
agreement with available literature.

� 2013 Elsevier Masson SAS. All rights reserved.

1. Introduction

It has been experimentally demonstrated that the micro scale
structures are size-dependent. For example, it has been observed in
somemetals which are deformed plastically (Guo et al., 2005; Poole
et al., 1996). In the micro-torsion test, Fleck et al. (1992) observed
that the torsional hardening of thin copper wires increases when
the wires diameter decreases. Also researchers have proven size-
dependent behavior in some polymers. For instance, Chong and
Lam (1999) observed strong size-dependency in epoxy and Lam
et al. (2003) investigated size-dependency in epoxy polymeric
beams and their results show a significant enhancement of nor-
malized bending rigidity as the thickness of the beam decreases. In
the micro-bending test of polypropylene micro-cantilevers,
McFarland and Colton (2005) showed a significant difference be-
tween their results and values predicted by the classical theory of
beam. The aforementioned experimental works reveal that the
intrinsic behavior of some materials is size-dependent and the

classical theory cannot predict reliable results due to lack of ma-
terial length scale parameters while the size of structures is at
micron-scale. Consequently, some higher-order theories have been
proposed to take into account the size effect in which constitutive
equations involve length scale parameters as well as classical
Lame’s constants.

One of the higher-order continuum theories is classical couple
stress theory proposed by some investigators such as Toupin
(1962), Mindlin and Tiersten (1962) and Koiter (1964). The theory
introduces two material length scale parameters for an isotropic
elastic material. The classical couple stress theory has been
employed in some static and dynamic problems (Zhou and Li, 2001;
Kang and Xi, 2007). Yang et al. (2002) suggested a modified couple
stress theory in which a higher-order equilibrium equation, i.e. the
equilibrium equation of couple of couples, is considered. As a result,
the couple stress tensor should be symmetric and only symmetric
part of rotation gradient tensor contributes to storage of elastic
energy. Therefore, one material length scale parameter associated
with the symmetric rotation gradient tensor is only included in
constitutive equations in addition to two classical constants. The
theory has been applied to study static and dynamic behavior of
size-dependent BernoullieEuler and Timoshenko beam models by
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some researchers such as Park and Gao (2006), Kong et al. (2008),
Ma et al. (2008), Asghari et al. (2010, 2011) and Reddy (2011). In the
analysis of plates employing the modified couple stress theory,
Tsiatas (2009) derived the governing equation of Kirchhoff plate
with the most general form of boundary conditions and
Jomehzadeh et al. (2011) studied the size-dependent vibration
analysis of Kirchhoff plate.

Another higher-order continuum theory has been developed by
Mindlin (1965) inwhich strain energy is considered as a function of
first and second-order gradients of strain tensor. In a normal case,
the theory involving only first-order gradient of strain tensor in-
troduces five new constants as well as Lame’s constants for an
isotropic linear elastic material (Mindlin and Eshel,1968). Altan and
Aifantis (1992) proposed a simplified strain gradient theory
involving only one new constant. Lazopoulos (2004) formulated
a geometrically nonlinear size-dependent plate based on the sim-
plified strain gradient elasticity theory. Fleck and Hutchinson (1993,
1997 and 2001) reformulated the Mindlin’s theory and called it the
strain gradient theory. Lam et al. (2003) utilizing the higher-order
equilibrium equation suggested by Yang et al. (2002) modified
the strain gradient elasticity theory. The theory involves three
material length scale parameters corresponding to the dilatation
gradient tensor, the deviatoric stretch gradient tensor and the
symmetric rotation gradient tensor. The higher-order stresses are
defined as the work-conjugate to the higher-order deformation
metrics. It should be noted that the modified strain gradient elas-
ticity theory can be reduced to the modified couple stress theory if
two of the three material length scale parameters are taken to be
zero. In other words, the modified couple stress theory is a special
case of the modified strain gradient elasticity theory. The modified
strain gradient elasticity has been utilized to investigate the static
and dynamic response of size-dependent BernoullieEuler and
Timoshenko beam models by some researchers such as Kong et al.
(2009) and Wang et al. (2010). Buckling of axially loaded micro-
scaled beams based on both of the modified couple stress theory
and the modified strain gradient elasticity theory has been studied
by Akgoz and Civalek (2011). Based on the simplified form of the
Mindlin’s strain gradient theory, a variational analysis of both
rectangular and circular plated has been carried out by Papargyri-
Beskou et al. (2010). Moreover, a new formulation based on the
modified strain gradient elasticity theory has been developed by
Wang et al. (2011) for simply supported plates. However, two
misconceptions have occurred in the study concerning stresse
strain relation and also extracting boundary conditions. It should
be noted that the proper boundary conditions, which are derived in
the presented work, are not satisfied by the double Fourier’ series
assumed in the Eq. (33) of the paper (Wang et al., 2011) for the
static and dynamic analysis. Therefore the obtained results in both
of the static and dynamic analysis would not be correct, naturally.

On the other hand, in the categories of numerical procedures, the
Extended Kantorovich Method (EKM) has been first introduced by
Kerr (1969) using the idea of the Kantorovich method to obtain
highly accurate closed-form solution for torsion of prismatic bars
with rectangular cross-section. Since then, EKMhasbeen extensively
used inmany applications. For instance, one is referred to eigenvalue
problems (Kerr, 1969), buckling (Yuan and Jin, 1998) and free vibra-
tions (Dalaei and Kerr, 1996) of thin rectangular plates, bending of
thick rectangular isotropic (Aghdam et al., 1996; Yuan et al., 1998)
and orthotropic (Aghdam and Falahatgar, 2003) plates, free-edge
strength analysis (Kim et al., 2000), vibration of variable thickness
plates (Shufrin andEisenberger, 2006) andbucklingof symmetrically
laminated plates (Ungbhakorn and Singhatanadgid, 2006). Although
the extended Kantorovich method is based on the variational prin-
ciple, it has been shown that initial guess functions are not required
to satisfy the boundary conditions (Kerr and Alexander, 1961; Dalaei

and Kerr, 1995; Aghdam et al., 1996). Utilizing the proposed method
reduces the problem of solving a partial differential equation to a set
of ordinary differential equations in the x and y directions. Iterative
scheme of the method forces the solution to satisfy all boundary
conditions. These two featuresmake the EKMmore appropriate than
the traditional weighted residual methods such as Galerkin or Ritz
method. Furthermore, the strain gradient platemodels are described
by a sixth order differential equation. Thus, the FEM conformity re-
quirements demand elements of C2 continuity which makes FEM
method tedious and impractical for the problem.

The object of the present work is to provide a solution for
bending analysis of a rectangular micro scale Kirchhoff plate using
the modified strain gradient elasticity theory and variational
principle. For this purpose, a highly accuratemethod, i.e. the EKM is
adopted to solve the energy based derived six order PDE together
with the appropriate boundary conditions. The outline of this paper
is organized as follows. In Section 2, the variational formulation of
the micro scale Kirchhoff plate based on the strain gradient elas-
ticity theory is in detail deduced using the minimum potential
energy principle. Then governing equation and boundary condi-
tions are obtained simultaneously. In Section 3, the extended
Kantorovich method is implemented. Subsequently, in Section4 the
static bending problem for both simply supported and clamped
boundary conditions is solved and numerical results of the current
Kirchhoff plate model are compared with both of the classical and
modified couple stress model. Validation of the presented EKM is
also carried out via the available literature. Finally, some conclu-
sions are summarized in Section 5.

2. Governing equation of micro plate

The strain gradient elasticity theory introduces dilatation gra-
dient tensor and the deviatoric stretch gradient tensor as well as
the symmetric rotation gradient. The strain energy U for an iso-
tropic linear elastic material occupying region V based on the
modified strain gradient elasticity theory is written as (Lam et al.,
2003)

U ¼ 1
2

Z
V

�
sijεij þ pigi þ sð1Þijk h

ð1Þ
ijk þmijc

S
ij

�
dv (1)

where

εij ¼
1
2
�
ui;j þ uj;i

�
(2)

gi ¼ εmm;i (3)

hð1Þijk ¼ hSijk �
1
5

�
dijh

S
mmk þ djkh

S
mmi þ dkih

S
mmj

�
(4)

cSij ¼
1
4
�
eimnun;mj þ ejmnun;mi

�
(5)

in which comma indicates partial derivative and ui is the dis-
placement vector, εij is the strain tensor, gi is the dilatation gradient

vector, hð1Þijk is the deviatoric stretch gradient tensor, cSij is the

symmetric rotation gradient tensor, dij is the Kronocker delta, eijk is
the permutation symbol and hSijk is the symmetric part of second-

order displacement gradient tensor defined by

hSijk ¼ 1
3

�
ui;jk þ uj;ki þ uk;ij

�
(6)
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