ELSEVIER

Contents lists available at SciVerse ScienceDirect

Journal of Power Sources

journal homepage: www.elsevier.com/locate/jpowsour

Electrochemical decomposition of Li₂CO₃ in NiO–Li₂CO₃ nanocomposite thin film and powder electrodes

Rui Wang^a, Xiqian Yu^{a,b}, Jianming Bai^c, Hong Li^{a,*}, Xuejie Huang^a, Liquan Chen^a, Xiaoqing Yang^b

- ^a Institute of Physics, Chinese Academy of Sciences, Beijing 100190, PR China
- ^b Brookhaven National Laboratory, Upton, NY 11973, USA
- ^cOak Ridge National Laboratory, Oak Ridge, TN 37831, USA

HIGHLIGHTS

- ▶ NiO-Li₂CO₃ composite thin film and powder electrodes are prepared.
- ► Li₂CO₃ phase is decomposable after being charging to 4.1 V.
- ▶ NiO acts as a catalyst to decompose Li₂CO₃.

ARTICLE INFO

Article history: Received 13 June 2011 Received in revised form 6 December 2011 Accepted 22 June 2012 Available online 2 July 2012

Keywords: Lithium carbonate Nickel oxide Nanocomposite Decomposition Thin film Lithium ion batteries

ABSTRACT

Two types of NiO–Li₂CO₃ nanocomposite electrodes have been prepared for the electrochemical decomposition studies. The thin film electrode with a thickness of 225 nm and grain size around 5–8 nm is prepared by a pulsed laser deposition method. The powder sample is prepared by a solution evaporation and calcination method with primary particle size in the range of 20–50 nm. Using *ex situ* TEM, Raman and FTIR spectroscopy and synchrotron based *in situ* XRD, the electrochemical decomposition of Li₂CO₃ phase in both types of the NiO–Li₂CO₃ nanocomposite electrodes after charging up to about 4.1 V vs Li⁺/Li at room temperature is clearly confirmed, but not in the electrode containing only Li₂CO₃. The NiO phase does not change significantly after charging process and may act as catalyst for the Li₂CO₃ decomposition. The potential of using NiO–Li₂CO₃ nanocomposite material as additional lithium source in cathode additive in lithium ion batteries has been demonstrated, which could compensate the initial irreversible capacity loss at the anode side.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Since the first report on reversible heterogeneous lithium storage in transition metal oxides by Poizot et al. in 2000 [1], the mechanism of conversion reaction has attracted a lot of attention. It is fundamentally interesting that the inert Li_2O is electrochemically decomposable at room temperature when forming nanocomposite with transition metals (TM). Later, analogous reversible lithium storage was also observed in transition metal fluorides, sulfides, nitrides, phosphides and selenides [2–7]. The enhanced electrochemical reactivity of LiX (X = F, O, S, N, P) is mainly related to the nanocomposite microstructure where the LiX and TM phases have extremely small grain size (<5 nm) and disperse

uniformly. It is also noticed that the solid electrolyte interphase (SEI) on these materials is decomposable upon charging [1,8–10]. This is quite different than the case of the SEI film on the graphite anode [11,12]. Our previous investigations confirmed that the oligomer, lithium alkyl carbonate and polymer like SEI components on Cr₂O₃ anode are not stable after charging to 3.0 V [9]. It is well known that inorganic phases, such as Li₂O, LiF and Li₂CO₃ are important components in the SEI films. Since Li₂O or LiF can be electrochemically decomposed in the conversion reaction on transitional metal compound anodes, it is very important to see if Li₂CO₃ is also electrochemically decomposable in its nanocomposite with transitional metal or metal compounds. Recently, reversible lithium storage in MnCO₃ in a voltage range of 0-3.0 V vs Li⁺/Li was reported by Tirado et al [13,14]. A conversion reaction mechanism was proposed but no experimental evidences were provided. This implies the possible decomposition of Li₂CO₃ when forming nanocomposite with Mn.

^{*} Corresponding author. Tel.: +86 10 82648067; fax: +86 10 82649046. E-mail address: hli@iphy.ac.cn (H. Li).

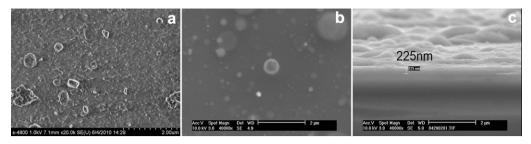


Fig. 1. (a and b) Top view of SEM images of the NiO-Li₂CO₃ composite thin films on Ti and Si substrates, respectively. (c) Cross-section view of the film on Si substrate.

It is also known that Li₂CO₃ phase can be found on the surface of Ni-based LiMO₂ type layered cathode materials after exposing in air for long time [15–17]. The existence of Li₂CO₃ on the surface of cathode materials produces severe deleterious effects on the capacity and power performance of the cathodes [16,17]. It has been noticed that aged Ni-based LiMO₂ shows an irreversible capacity loss. The origin is suggested to be related to the electrolyte decomposition. However, it is not clear whether the capacity loss is also related to the irreversible decomposition of Li₂CO₃.

In addition, it was regarded that the poor cycle life of the Li-air batteries using carbonate-based electrolytes is probably due to the undesirable discharge products of carbonates (lithium alkyl carbonates and/or Li₂CO₃) rather than the desired Li₂O₂ and Li₂O [18–20]. Therefore, the electrochemical decomposition of Li₂CO₃ could be applied in a positive way for the Li-air batteries.

Accordingly, the studies on electrochemical decomposition of Li₂CO₃ will have very important implication for both Li-ion batteries and Li-air batteries. In this work, the NiO–Li₂CO₃ thin films and powder nanocomposite electrode have been prepared and characterized by SEM, XRD, TEM, Raman, and FTIR. The electrochemical decomposition phenomenon of Li₂CO₃ in the nanocomposite electrodes is investigated.

2. Experimental

The NiO-Li₂CO₃ nanocomposite thin film electrodes were prepared by a pulsed laser deposition (PLD) system. A mixture of NiO (99%, Sinopharm Chemical Reagent Co., Ltd) and Li₂CO₃ (98%, Sinopharm Chemical Reagent Co., Ltd) at a molar ratio of 1:1.1 was ball-milled for 6 h, and then pressed into a one-inch diameter pellet. The pellet was then sintered at 450 °C under argon atmosphere for 24 h to form a PLD target. In the PLD system, a KrF excimer laser (Tuilaser, 248 nm beam, Germany) was used as a light source. The laser beam was focused on the rotating NiO-Li₂CO₃ target with an angle of 45°, and the target-substrate distance was 35 mm. The energy density was fixed at 5 J cm⁻² with a repetition rate of 9 Hz. Before deposition, the PLD chamber was evacuated to 1.0×10^{-4} Pa and then kept at 20 Pa under high-purity argon (99.999%) during deposition. The thin film was deposited for 1.5 h on two different types of substrates: on Ti foil (99.99%, Alfa, polished by 1000 # sand paper) at RT for Raman, Fourier transformed infrared (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and electrochemical studies; and on Si (100) wafer for thickness measurements.

The NiO–Li₂CO₃ composite powder was synthesized as follows. Firstly, 6.242 g of $C_4H_6NiO_4\cdot 4H_2O$ (99%, Sinopharm Chemical Reagent Co., Ltd) and 5.075 g of $C_2H_3LiO_2\cdot 2H_2O$ (98%, Shanghai Huajing Biological High-Tech Co., Ltd) were dissolved in 100 ml of distilled water, then 100 ml aqueous solution contained 0.075 M NH₄HCO₃ (AR, Beijing Chemical Reagents Company) was dripped in the pre-blended solution. The suspension was kept stirring for 1 h after the addition, and then was dried at 80 °C for about 72 h. The

as-prepared powders were ground and heated in air at 400 °C for 1 h. The final product, the NiO-Li₂CO₃ composite material, was ground and used for further tests. The NiO-Li₂CO₃ powder electrodes were composed of the NiO-Li₂CO₃ powder, carbon black and PVDF at a weight ratio of 80:10:10. An Al foil was used as current collector and the electrode area was 0.64 cm 2 (8 \times 8 mm). The electrochemical experiments for both the powder and the thin film electrodes were performed using Swagelok type two-electrode cells. The electrolyte was 1 M LiPF₆ dissolved in ethylene carbonate (EC) and dimethyl carbonate (DMC) with a volume ratio of 1:1 (Shanghai Topsol Ltd., H₂O < 5 ppm). The cells were assembled in an argon-filled glove box and cycled using a Land automatic battery tester. The thin films and powders were analyzed by an X'Pert Pro MPD X-ray diffracter (Philips, Holland) using Cu $K\alpha$ 1 radiation (λ = 1.5405 Å), a micro-Raman spectrometer (Horiba/ Jobin Yvon HR800, France) with a 532 nm laser line, a scanning electron (SEM) microscope (XL 30 S-FEG, FEI Co., USA or Hitachi S4800, Hitachi, Japan), and a transmission electron (TEM) microscope (FEI Tecnai F-20). The sample for TEM investigation was prepared by scratching the surface of the thin film using stainless steel doctor blade and dispersing the scrapings into dimethyl carbonate then transferring onto holey carbon Cu grids in the glove box. Each Fourier transformed infrared (FTIR) spectrum was taken as the average of 400 scans on a BIO-RAD FTS-60 spectrometer. The investigation of in situ XRD pattern was accomplished on the beam line X14A with the energy of 16 keV (0.776 Å) at the National Synchrotron Light Source (NSLS), Brookhaven National Laboratory, USA. The optics was designed to focus the beam into

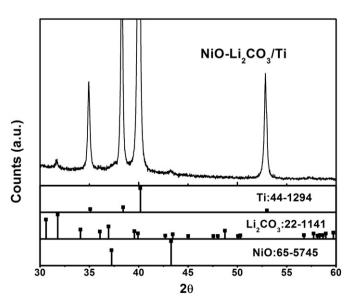


Fig. 2. XRD pattern of NiO-Li₂CO₃ nanocomposite thin film.

Download English Version:

https://daneshyari.com/en/article/7742932

Download Persian Version:

https://daneshyari.com/article/7742932

<u>Daneshyari.com</u>