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a b s t r a c t

A two-dimensional problem in the Stroh formalism is derived for the continuum theory of thermo-
electroelasticity with polarization gradients. Dissipative effects are accounted for, according to a consti-
tutive model outlined in previous works. The eigenvector problem is studied in the frequency domain to
obtain a representation of the solution in terms of two classes of modes corresponding to opposite signs
of imaginary part of the eigenvalues. Impedance and admittance tensors are exploited to express the
energy flux of the thermoelectroelastic transformed field across an interface S. The compatibility
conditions at S are also derived. The eigenvector equations are then rewritten in the time domain to
obtain two convolution-type integral equations for the Hilbert transforms of the real fields corre-
sponding to each mode.

� 2009 Elsevier Masson SAS. All rights reserved.

1. Introduction

The electromechanical continuum theory of ionic crystals has
received a noticeable improvement by the works of Mindlin (1968,
1969) in the late sixties. The main feature of the original approach
consists in accounting for the polarization gradient in the consti-
tutive equations in order to describe electroelastic couplings, just at
a linear level, also in polarizable crystals which do not allow for the
piezoelectric effect. A lattice’s dynamic derivation of electroelastic
coupling in alkali halide has supported this point of view showing
that, in the long-wave approximation, contributions due to polar-
ization gradient arise in the linearized model as a consequence of
shell–shell and core–core interactions between the lattice’s
constituents (Askar et al., 1970; Askar and Lee, 1974).

Some application of this theory have been developed in the past,
concerning both static and dynamic specific problems (see Mindlin,
1969; Maugin, 1988 and references therein, and, more recently,
Nowacki, 2004). It is worth remarking that theories of electroelastic
media which include strain gradients in the constitutive equations
have been recently investigated to account for the so called
’’flexoelectric effect’’ which consists in the converse effect, where
polarization arises due to a strain gradient (Maranganti et al., 2006;
Majdoub et al., 2008). The interest into both direct and converse
effects is motivated by their suitability to account for a noticeable
electromechanical coupling in thin structures and at interfaces or
surfaces.

A comprehensive theoretical approach of the continuum theory
of polarizable crystals was given by Maugin (1988). He derived
a non-linear theory including electromagnetic and thermal
coupling, also accounting for polarization gradient and polarization
inertia. Some improvements of the general theory have been
recently suggested introducing the point of view of internal vari-
ables to model dissipation in accordance with the second law of
thermodynamics (Romeo, 2007).

In this paper we formulate a two-dimensional vector problem in
Stroh (1962) formalism, rewriting the governing equations of the
linear theory of continuum thermoelasticity of polarizable dielec-
tric solids in the form of an eigenvector equation for a sixteen
components field. We allow for non-stationary solutions and use
the Fourier transform to state an eigenvector problem in the
frequency domain. The set of balance and constitutive equations is
given in Section 2 according to the Maugin’s approach. Here,
looking at the Stroh-type formulation, we write the constitutive
equation for the shell–shell interaction tensor as a purely homo-
geneous equation, accounting for the polarization effects at the free
surface within the boundary conditions. The dissipative effects are
modeled via internal variables according to Romeo (2007). These
variables are then eliminated in writing the governing equations for
the transformed field, as shown in Section 3. In Section 4 we show
how the integral formalism (Lothe and Barnett, 1976a,b) can be
applied in the frequency domain, and give a detailed discussion
about the splitting of the solution to the eigenvector problem in
two classes of modes corresponding to different signs of the
imaginary part of the eigenvalues. The impedance and admittance
tensors are used to express the energy flux at interfaces and theE-mail address: maurizio.romeo@unige.it
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specific role of the polarization constraint at the free surface is
outlined in Section 5. Owing to its relevance in the theory of surface
and interfacial wave propagation, in Section 6 we give the
compatibility conditions at an interface S separating two different
polarizable crystals. These conditions are directly obtained by the
continuity of the pertinent physical fields at S. Finally, in Section 7
we rewrite the integrated eigenvector problem in the time domain,
thus arriving at a couple of convolution-type integral equations for
the Hilbert transform of the real physical field.

2. Thermoelectroelastic continuum model for ionic crystals

Here we summarize the governing equations of the continuum
model of thermoelectroelastic polarizable anisotropic media
(Maugin, 1988, ch. 7). They are characterized by the dependence of
the constitutive functions from the polarization gradient and the
presence of the polarization inertia in the balance equation for
polarization.

We denote by r the mass density in the current configuration Bt

of an arbitrary portion of the continuum and by u, p, 3 and q,
respectively, the mechanical displacement, the polarization vector,
the energy density and the heat flux. Adopting the quasi-static
hypothesis, the electric field will be given by – P4, where 4 is the
electric potential. Looking at the linearized model of the general non-
linear theory, in absence of external mechanical body forces and heat
supplies, we write the balance equations in Bt as (Romeo, 2007)

r€u ¼ V$T ; (2.1)

d€p ¼ �Vfþ eþ 1
r

V$E; (2.2)

r_3 ¼ �V$q; (2.3)

where d is the polarization inertia per unit mass. The quantities T, e
and E represent, respectively, the (Cauchy) stress tensor, the local
electric field and the shell–shell or core–core interaction tensor due
to the effects of polarization and its gradient. According to the
divergence free condition for the electric displacement

d ¼ �Vfþ p; (2.4)

we also have

V$p� Df ¼ 0; (2.5)

Denoting by n the outward normal to the boundary vBt we have

nT ¼ tðnÞ; (2.6)

1
r

nE ¼ pðsÞ � bð0Þ; (2.7)

n$q ¼ qn; (2.8)

n$p� n$Vf ¼ dn; (2.9)

at any point in vBt . t(n), qn and dn represent, respectively, the
mechanical traction acting at the boundary, the heat flux across vBt

and the normal component of the electric displacement at vBt , while
p(s),�b(0) are, respectively, the surface density of (possible) electric
dipoles and the intrinsic ‘‘polarization traction’’ on vBt (cf. Romeo,
2008). The last quantity is a constitutive parameter of the polarizable
continuum, which depends on the microscopic structure of the
crystal lattice (Askar and Lee, 1974). According to the previous

equations, the energy flux vector of the thermoelectroelastic field
can be written as

J ¼ �T _u� 1
r

E _pþ f _dþ q: (2.10)

This expression is a consequence of the energy balance for the
model at hand (Maugin, 1988). It reduces to the usual energy flux
vector of linear electroelasticity if the effects of polarization gradient
and heat conduction are discarded (see for example Auld, 1990).

In Romeo (2007) it has been shown that an effective description
of dissipative effects in the thermoelectroelastic model with polari-
zation gradients can be obtained by introducing a symmetric second
order tensor U and a vector c which play the role of internal variables
obeying a couple of supplementary suitable evolution equations. The
constitutive functions for T, e and E also depends on U and c. In the
linear case we have

T ¼ UhhhþUhppþUhPVpþUUUUþUUcc; (2.11)

e ¼ �
�

UphhþUpppþUpPVp
�
; (2.12)

1
r

E¼UPhhþUPppþUPPVpþNt
�

UUUUþUUcc
�

(2.13)

q ¼ �
�

UcUUþUccc
�

R; (2.14)

where h ¼ 1
2½Vuþ ðVuÞT � is the infinitesimal strain tensor and

where R and N are non-singular, respectively, second and fourth
order tensors. The tensor coefficients U are taken to be constant
and comply with the properties

Uab ¼
�

Uba
�t
;

where the superimposed t denotes transposition with respect to
the sets of tensorial order of a and b. For instance

U
Pp
ijk ¼ U

pP
kij :

Within the same approximation, the evolution equations for the
internal variables take the form

_U ¼ _hþNV _pþ gUU; (2.15)

_c ¼ aRV3þ gcc; (2.16)

where gU,gc are real negative parameters and a¼�d2j/dq2j0q0.
Here j is the free energy density and q0 is the thermodynamic
temperature of the unperturbed continuum. Since �j is a convex
function of q, a turns out to be a real positive parameter. Also, as
a consequence of the second law of thermodynamics, the block
matrix�

UUU UUc

UcU Ucc

�
;

turns out to be positive definite. The same property is supposed to
hold for the block matrix (cf. Romeo, 2008)

0@ Uhh Uhp UhP

Uph Upp UpP

UPh UPp UPP
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