Contents lists available at ScienceDirect

Solid State Ionics

journal homepage: www.elsevier.com/locate/ssi

Preparation and chemical compatibility of lithium aluminum germanium phosphate solid electrolyte

Yingjia Liu, Jian Chen*, Jing Gao

Advanced Secondary Batteries Laboratory, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China

ARTICLE INFO

Keywords: Li_{1.5}Al_{0.5}Ge_{1.5}(PO₄)₃ NASICON-type electrolyte Facile sol-gel process Chemical stability

ABSTRACT

The NASICON-type Li_{1.5}Al_{0.5}Ge_{1.5}(PO₄)₃ electrolytes were synthesized by a facile aqueous-based sol-gel process with alcohols free. Compared with the samples prepared by solid-state reaction, the modified sol-gel derived Li_{1.5}Al_{0.5}Ge_{1.5}(PO₄)₃ electrolyte exhibited a rhombohedral crystal symmetry without impurity phase and higher ionic conduction behavior. After sintered at 850 °C for 5 h, the sol-gel specimen showed a total ionic conductivity of 3.1×10^{-4} S/cm at 30 °C and 1.0×10^{-3} S/cm at 60 °C. In addition, the chemical and phase stability of the as-prepared Li_{1.5}Al_{0.5}Ge_{1.5}(PO₄)₃ with three types of cathode materials (i.e. LiNi_{0.8}Co_{0.15}Al_{0.05}O₂, LiNi_{0.5}Mn_{1.5}O₄ and Li₃V₂(PO₄)₃) was investigated in the temperature range of 500 to 700 °C. This work proposes a synthesis choice for Li_{1.5}Al_{0.5}Ge_{1.5}(PO₄)₃, and also favors to the electrode identification for all-solid-state lithium secondary battery using NASICON-type electrolyte.

1. Introduction

Lithium-ion batteries (LIBs) are attractive power source for portable electronic devices. Their further applications in the electrical vehicles and large-scale energy storage system require high safety, large energy density and wide temperature compatibility [1]. However, the conventional organic liquid electrolytes limit the battery application due to their flammability and low electrochemical window [2]. Therefore, research interest has focused on the all-solid-state lithium secondary batteries to solve the safety issue of LIBs. As the key component in the solid-state battery, the solid electrolytes are expected to possess high ionic conductivity, wide electrochemical window and good chemical compatibility with electrodes [3].

Among all the electrolyte materials, the NASICON-type electrolytes, e.g. Li_{1 + x}Al_xGe_{2 - x}(PO₄)₃, are promising candidates due to their high ionic conductivity. Similar to other NASICONs, the Li_{1 + x}Al_xGe_{2 - x}(PO₄)₃ lattice contains two types of polyhedra, GeO₆ octahedra and PO₄ tetrahedra, linked by corners to form the $[Ge_2(PO_4)_3]^-$ skeleton. This rigid framework provides the 3D interconnected channels for Li⁺ migration [4]. Various techniques have been reported to prepare Li_{1 + x}Al_xGe_{2 - x}(PO₄)₃ electrolytes, i.e. meltquenching method [5,6], solid-state reaction [7,8], sol-gel synthesis [9,10], flame spray technique [11], etc. The Li_{1 + x}Al_xGe_{2 - x}(PO₄)₃ glass-ceramics synthesized by melt-quenching often possess high ionic conductivity with dense microstructure [12]. However, this technique involves a high-temperature melting process (1350-1600 °C) and long

annealing time, which probably requires high energy consumption and laborious grinding work. Besides, the heat treatment over 1200 °C can easily lead to lithium losses [13]. Consequently, to develop a low-temperature synthesis method is of practical interest for $\text{Li}_{1 + x}\text{Al}_x\text{Ge}_{2 - x}(\text{PO}_4)_3$ electrolyte. As mentioned above, sol-gel method has been applied in the preparation of NASICON-type electrolytes. However the alcohols system or organic solvents are commonly used, either to dissolve metal alkoxide or to prevent precipitation and promote polyesterification [7,9,14]. Then a facile aqueous-based sol-gel method is highly required.

In addition, to fabricate all-solid-state lithium secondary battery using ceramic electrolytes, the annealing procedure at high temperature is usually necessary for crystallization of cathode film and better components connection [15]. It has been reported that the unfavorable interaction between cathodes and solid electrolyte during annealing can lead to the interfacial resistance growth, and then capacity decay [16]. Therefore, the chemical stability (or say chemical compatibility) of solid electrolyte with electrode materials becomes quite important for the cell performance. However, the high-temperature compatibility of $\text{Li}_{1 + x}\text{Al}_x\text{Ge}_{2 - x}(\text{PO}_4)_3$ with different cathode materials has not been widely investigated yet.

In this work, the Li_{1.5}Al_{0.5}Ge_{1.5}(PO₄)₃ (LAGP) electrolyte was prepared by a facile sol-gel method in aqueous solution with simple and economical Ge(OCH₃)₄ as germanium source. The structure-electrochemical property relationship of the as-prepared LAGP was investigated. Besides, three kinds of promising cathode materials, i.e.

E-mail address: chenjian@dicp.ac.cn (J. Chen).

http://dx.doi.org/10.1016/j.ssi.2017.10.016

^{*} Corresponding author.

Received 13 July 2017; Received in revised form 2 October 2017; Accepted 18 October 2017 Available online 06 November 2017 0167-2738/ © 2017 Elsevier B.V. All rights reserved.

LiNi_{0.5}Mn_{1.5}O₄, LiNi_{0.8}Co_{0.15}Al_{0.05}O₂, and Li₃V₂(PO₄)₃, were selected to interact with LAGP for chemical compatibility analyses. LiNi_{0.5}Mn_{1.5}O₄ has a high charge/discharge voltage plateau of c.a. 4.7 V vs. Li/Li⁺, favorable for high energy density [17]. LiNi_{0.8}Co_{0.15}Al_{0.05}O₂ presents a superior discharge specific capacity of ca. 200 mAh/g among current commercial cathode materials [18]. Li₃V₂(PO₄)₃, similar to Li_{1 + x}Al_xGe_{2 - x}(PO₄)₃, is also a polyanion-type phosphate material but with a lower crystallographic symmetry [19].

The aim of our work is to provide a preparation choice for LAGP electrolyte, and also favor to clarify the interaction mechanism of LAGP with cathode materials for better electrode identification in all-solid-state lithium secondary batteries.

2. Experimental

2.1. Material synthesis

The Li_{1.5}Al_{0.5}Ge_{1.5}(PO₄)₃ precursor was prepared by a facile aqueous-based sol-gel process. Stoichiometric amounts of LiNO3, Al (NO₃)₃·9H₂O and NH₄H₂PO₄ were first dissolved in de-ionized water by magnetic stirring. Citric acid (CA) was added into the nitrate solution as chelating agent with the molar ratio of [CA] / the $[Li^+ + Ge^{4+} + Al^{3+}] = 2$. Then stoichiometric $Ge(OCH_3)_4$ was dissolved to form a transparent homogeneous solution. The reaction system was heated at 80 °C for polyesterification. When the viscous gel was formed, it was transferred to an oven and heated up to 170 °C for 15 h to evaporate water and promote polymerization and gelation. The dried gel was ground and then pyrolyzed at 500 °C for 5 h to release the volatile compounds. The as-prepared LAGP precursor was reground, die-pressed into pellets, and sintered at 850 °C for 5 h in air on a platinum sheet to avoid reaction with alumina crucible. For comparison, $Li_{1 + x}Al_{x}Ge_{2 - x}(PO_{4})_{3}$ was also synthesized through the conventional solid-state reaction. The stoichiometric mixtures of Li₂CO₂, GeO₂, Al₂O₃ and NH₄H₂PO₄ were ball-milled and calcined at 700 °C. The precursor was then ground and die-pressed into pellets, followed by sintering at 850 °C for 5 h as well.

To investigate the chemical stability of LAGP electrolyte towards cathode materials at high temperature, three active materials were selected, i.e. $LiNi_{0.5}Mn_{1.5}O_4$, $LiNi_{0.85}Co_{0.10}Al_{0.05}O_2$, and $Li_3V_2(PO_4)_3$. The as-prepared LAGP and each cathode powder were first weighed in 1:1 weight ratio, mixed thoroughly and reacted at 500 °C, 600 °C and 700 °C for 1 h, respectively. Then, to further evaluate their stability in a more compact condition, the mixture of LAGP and each cathode (with 1/1wt ratio) were die-pressed into pellets, and reacted at 700 °C for 1 h. For $LiNi_{0.5}Mn_{1.5}O_4$ and $LiNi_{0.85}Co_{0.10}Al_{0.05}O_2$ cases, they were co-heated with LAGP in air. Since $Li_3V_2(PO_4)_3$ can be oxidized in air at high temperature, $Li_3V_2(PO_4)_3$ and LAGP were co-heated in Ar_2 atmosphere.

2.2. Characterization and measurements

The crystal structures of synthesized LAGP and its composites after co-sintered with different electrode materials were investigated using a powder x-ray diffractometer (PANalytical X'pert Pro). Samples were scanned over the 2θ range of 5–90° with CuK_{α} radiation at room temperature. The Rietveld refinement of as-prepared LAGP was conducted with the FullProf software [20]. The morphology and composition of the LAGP and its co-sintered pellets were characterized by a scanning electron microscope (SEM, JEOL JSM-7800F) equipped with an energydispersive X-ray spectroscopy (EDS). The ionic conductivity of the sintered pellets were measured by the electrochemical impedance spectroscopy (EIS) using an electrochemical workstation (Princeton Applied Research VersaSTAT 4). A gold coating was sputtered on both sides of the pellets as Li blocking electrodes. EIS data were collected in the frequency range between 1 MHz and 1 Hz with AC amplitude of 5 mV in the temperature range of 30 to 100 °C. The activation energy $(E_{\rm a})$ for lithium-ion conduction was calculated from the Arrhenius plot

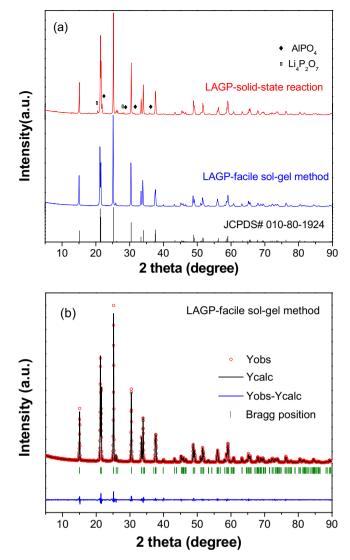


Fig. 1. (a)XRD patterns of Li_{1.5}Al_{0.5}Ge_{1.5}(PO₄)₃ sintered at 850 °C for 5 h by facile sol-gel method and solid-state reaction, (b) Observed, calculated, Bragg reflections and difference profiles of XRD patterns of Li_{1.5}Al_{0.5}Ge_{1.5}(PO₄)₃ synthesized by the facile sol-gel method.

of the total ionic conductivity to temperature. The electrochemical window of synthesized LAGP was determined by the cyclic voltammetry (CV) at a scan rate of 0.1 mV/s between - 0.5 and 6.0 V. An Au layer was sputtered on one side of the specimen as a working electrode, while a lithium foil was attached on the other side as a counter and reference electrode.

3. Results and discussions

Fig. 1(a) shows XRD patterns of Li_{1.5}Al_{0.5}Ge_{1.5}(PO₄)₃ sintered at 850 °C for 5 h by facile sol-gel method and solid-state reaction, respectively. The diffraction peaks of the sol-gel derived sample can be indexed to the LiGe₂(PO₄)₃ with the NASICON structure (JCPSD# 01-080-1924). The Rietveld analyses of its XRD pattern in Fig. 1(b) indicated the sol-gel LAGP had a rhombohedral structure with the space group *R*-3c. The lattice parameters were calculated to be a = 8.2604(3) (Å) and c = 20.6224(8) (Å), which slightly varied from the size of Li-Ge₂(PO₄)₃ due to the Al³⁺ doping. The small weighted factor $R_{wp}(\sim 6.63\%)$ suggested that single-phase LAGP can be prepared by this facile sol-gel method. As for the LAGP prepared by solid-solid reaction, besides the major rhombohedral phase, its XRD spectra also exhibited

Download English Version:

https://daneshyari.com/en/article/7744338

Download Persian Version:

https://daneshyari.com/article/7744338

Daneshyari.com