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A B S T R A C T

The NASICON-type Li1.5Al0.5Ge1.5(PO4)3 electrolytes were synthesized by a facile aqueous-based sol-gel process
with alcohols free. Compared with the samples prepared by solid-state reaction, the modified sol-gel derived
Li1.5Al0.5Ge1.5(PO4)3 electrolyte exhibited a rhombohedral crystal symmetry without impurity phase and higher
ionic conduction behavior. After sintered at 850 °C for 5 h, the sol-gel specimen showed a total ionic con-
ductivity of 3.1 × 10−4 S/cm at 30 °C and 1.0 × 10−3 S/cm at 60 °C. In addition, the chemical and phase
stability of the as-prepared Li1.5Al0.5Ge1.5(PO4)3 with three types of cathode materials (i.e. LiNi0.8Co0.15Al0.05O2,
LiNi0.5Mn1.5O4 and Li3V2(PO4)3) was investigated in the temperature range of 500 to 700 °C. This work proposes
a synthesis choice for Li1.5Al0.5Ge1.5(PO4)3, and also favors to the electrode identification for all-solid-state
lithium secondary battery using NASICON-type electrolyte.

1. Introduction

Lithium-ion batteries (LIBs) are attractive power source for portable
electronic devices. Their further applications in the electrical vehicles
and large-scale energy storage system require high safety, large energy
density and wide temperature compatibility [1]. However, the con-
ventional organic liquid electrolytes limit the battery application due to
their flammability and low electrochemical window [2]. Therefore,
research interest has focused on the all-solid-state lithium secondary
batteries to solve the safety issue of LIBs. As the key component in the
solid-state battery, the solid electrolytes are expected to possess high
ionic conductivity, wide electrochemical window and good chemical
compatibility with electrodes [3].

Among all the electrolyte materials, the NASICON-type electrolytes,
e.g. Li1 + xAlxGe2 − x(PO4)3, are promising candidates due to their high
ionic conductivity. Similar to other NASICONs, the
Li1 + xAlxGe2 − x(PO4)3 lattice contains two types of polyhedra, GeO6

octahedra and PO4 tetrahedra, linked by corners to form the
[Ge2(PO4)3]− skeleton. This rigid framework provides the 3D inter-
connected channels for Li+ migration [4]. Various techniques have
been reported to prepare Li1 + xAlxGe2 − x(PO4)3 electrolytes, i.e. melt-
quenching method [5,6], solid-state reaction [7,8], sol-gel synthesis
[9,10], flame spray technique [11], etc. The Li1 + xAlxGe2 − x(PO4)3
glass-ceramics synthesized by melt-quenching often possess high ionic
conductivity with dense microstructure [12]. However, this technique
involves a high-temperature melting process (1350-1600 °C) and long

annealing time, which probably requires high energy consumption and
laborious grinding work. Besides, the heat treatment over 1200 °C can
easily lead to lithium losses [13]. Consequently, to develop a low-
temperature synthesis method is of practical interest for
Li1 + xAlxGe2 − x(PO4)3 electrolyte. As mentioned above, sol-gel
method has been applied in the preparation of NASICON-type electro-
lytes. However the alcohols system or organic solvents are commonly
used, either to dissolve metal alkoxide or to prevent precipitation and
promote polyesterification [7,9,14]. Then a facile aqueous-based sol-gel
method is highly required.

In addition, to fabricate all-solid-state lithium secondary battery
using ceramic electrolytes, the annealing procedure at high tempera-
ture is usually necessary for crystallization of cathode film and better
components connection [15]. It has been reported that the unfavorable
interaction between cathodes and solid electrolyte during annealing
can lead to the interfacial resistance growth, and then capacity decay
[16]. Therefore, the chemical stability (or say chemical compatibility)
of solid electrolyte with electrode materials becomes quite important
for the cell performance. However, the high-temperature compatibility
of Li1 + xAlxGe2 − x(PO4)3 with different cathode materials has not
been widely investigated yet.

In this work, the Li1.5Al0.5Ge1.5(PO4)3 (LAGP) electrolyte was pre-
pared by a facile sol-gel method in aqueous solution with simple and
economical Ge(OCH3)4 as germanium source. The structure-electro-
chemical property relationship of the as-prepared LAGP was in-
vestigated. Besides, three kinds of promising cathode materials, i.e.
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LiNi0.5Mn1.5O4, LiNi0.8Co0.15Al0.05O2, and Li3V2(PO4)3, were selected to
interact with LAGP for chemical compatibility analyses. LiNi0.5Mn1.5O4

has a high charge/discharge voltage plateau of c.a. 4.7 V vs. Li/Li+,
favorable for high energy density [17]. LiNi0.8Co0.15Al0.05O2 presents a
superior discharge specific capacity of ca. 200 mAh/g among current
commercial cathode materials [18]. Li3V2(PO4)3, similar to
Li1 + xAlxGe2 − x(PO4)3, is also a polyanion-type phosphate material
but with a lower crystallographic symmetry [19].

The aim of our work is to provide a preparation choice for LAGP
electrolyte, and also favor to clarify the interaction mechanism of LAGP
with cathode materials for better electrode identification in all-solid-
state lithium secondary batteries.

2. Experimental

2.1. Material synthesis

The Li1.5Al0.5Ge1.5(PO4)3 precursor was prepared by a facile aqu-
eous-based sol-gel process. Stoichiometric amounts of LiNO3, Al
(NO3)3·9H2O and NH4H2PO4 were first dissolved in de-ionized water by
magnetic stirring. Citric acid (CA) was added into the nitrate solution as
the chelating agent with the molar ratio of [CA] /
[Li+ + Ge4+ + Al3+] = 2. Then stoichiometric Ge(OCH3)4 was dis-
solved to form a transparent homogeneous solution. The reaction
system was heated at 80 °C for polyesterification. When the viscous gel
was formed, it was transferred to an oven and heated up to 170 °C for
15 h to evaporate water and promote polymerization and gelation. The
dried gel was ground and then pyrolyzed at 500 °C for 5 h to release the
volatile compounds. The as-prepared LAGP precursor was reground,
die-pressed into pellets, and sintered at 850 °C for 5 h in air on a pla-
tinum sheet to avoid reaction with alumina crucible. For comparison,
Li1 + xAlxGe2 − x(PO4)3 was also synthesized through the conventional
solid-state reaction. The stoichiometric mixtures of Li2CO3, GeO2, Al2O3

and NH4H2PO4 were ball-milled and calcined at 700 °C. The precursor
was then ground and die-pressed into pellets, followed by sintering at
850 °C for 5 h as well.

To investigate the chemical stability of LAGP electrolyte towards
cathode materials at high temperature, three active materials were se-
lected, i.e. LiNi0.5Mn1.5O4, LiNi0.85Co0.10Al0.05O2, and Li3V2(PO4)3. The
as-prepared LAGP and each cathode powder were first weighed in 1:1
weight ratio, mixed thoroughly and reacted at 500 °C, 600 °C and
700 °C for 1 h, respectively. Then, to further evaluate their stability in a
more compact condition, the mixture of LAGP and each cathode (with
1/1wt ratio) were die-pressed into pellets, and reacted at 700 °C for 1 h.
For LiNi0.5Mn1.5O4 and LiNi0.85Co0.10Al0.05O2 cases, they were co-he-
ated with LAGP in air. Since Li3V2(PO4)3 can be oxidized in air at high
temperature, Li3V2(PO4)3 and LAGP were co-heated in Ar2 atmosphere.

2.2. Characterization and measurements

The crystal structures of synthesized LAGP and its composites after
co-sintered with different electrode materials were investigated using a
powder x-ray diffractometer (PANalytical X'pert Pro). Samples were
scanned over the 2θ range of 5–90° with CuKα radiation at room tem-
perature. The Rietveld refinement of as-prepared LAGP was conducted
with the FullProf software [20]. The morphology and composition of
the LAGP and its co-sintered pellets were characterized by a scanning
electron microscope (SEM, JEOL JSM-7800F) equipped with an energy-
dispersive X-ray spectroscopy (EDS). The ionic conductivity of the
sintered pellets were measured by the electrochemical impedance
spectroscopy (EIS) using an electrochemical workstation (Princeton
Applied Research VersaSTAT 4). A gold coating was sputtered on both
sides of the pellets as Li blocking electrodes. EIS data were collected in
the frequency range between 1 MHz and 1 Hz with AC amplitude of
5 mV in the temperature range of 30 to 100 °C. The activation energy
(Ea) for lithium-ion conduction was calculated from the Arrhenius plot

of the total ionic conductivity to temperature. The electrochemical
window of synthesized LAGP was determined by the cyclic voltam-
metry (CV) at a scan rate of 0.1 mV/s between −0.5 and 6.0 V. An Au
layer was sputtered on one side of the specimen as a working electrode,
while a lithium foil was attached on the other side as a counter and
reference electrode.

3. Results and discussions

Fig. 1(a) shows XRD patterns of Li1.5Al0.5Ge1.5(PO4)3 sintered at
850 °C for 5 h by facile sol-gel method and solid-state reaction, re-
spectively. The diffraction peaks of the sol-gel derived sample can be
indexed to the LiGe2(PO4)3 with the NASICON structure (JCPSD# 01-
080-1924). The Rietveld analyses of its XRD pattern in Fig. 1(b) in-
dicated the sol-gel LAGP had a rhombohedral structure with the space
group R-3c. The lattice parameters were calculated to be a = 8.2604(3)
(Å) and c = 20.6224(8) (Å), which slightly varied from the size of Li-
Ge2(PO4)3 due to the Al3+ doping. The small weighted factor
Rwp(~6.63%) suggested that single-phase LAGP can be prepared by this
facile sol-gel method. As for the LAGP prepared by solid-solid reaction,
besides the major rhombohedral phase, its XRD spectra also exhibited

10 20 30 40 50 60 70 80 90

2 theta (degree)

JCPDS# 010-80-1924

I
n

t
e
n

s
i
t
y
(
a
.
u

.
)

LAGP-facile sol-gel method

LAGP-solid-state reaction

Li
4
P

2
O

7

AlPO
4

(a)

10 20 30 40 50 60 70 80 90

 Bragg position

I
n

t
e
n

s
i
t
y
 
(
a
.
u

.
)

2 theta (degree)

LAGP-facile sol-gel method(b)

 Yobs

 Ycalc

 Yobs-Ycalc

Fig. 1. (a)XRD patterns of Li1.5Al0.5Ge1.5(PO4)3 sintered at 850 °C for 5 h by facile sol-gel
method and solid-state reaction, (b) Observed, calculated, Bragg reflections and differ-
ence profiles of XRD patterns of Li1.5Al0.5Ge1.5(PO4)3 synthesized by the facile sol-gel
method.
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