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A fully kinematical, mixed finite element approach based on a recent interior point method for convex
optimization is proposed to solve the limit analysis problem involving homogeneous Gurson materials.
It uses continuous or discontinuous quadratic velocity fields as virtual variables, with no hypothesis on
a stress field. Its modus operandi is deduced from the Karush–Kuhn–Tucker optimality conditions of the
mathematical problem, providing an example of cross-fertilization between mechanics and mathematical
programming. This method is used to solve two classical problems for the von Mises plasticity criterion
as a test case, and for the Gurson criterion for which analytical solutions do not exist. Using only the
original plasticity criterion as material data, the method proposed appears robust and efficient, providing
very tight bounds on the limit loadings investigated.
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1. Introduction

In the matter of ductile failure of porous materials, Gurson’s
plasticity criterion (Gurson, 1977) is the most widely accepted be-
cause it is based on a micro–macro approach and on the kinemat-
ical method of limit analysis (LA). Gurson’s model treats a hollow
von Mises sphere or cylinder with macroscopic strain imposed on
the boundary. Recently, in Trillat and Pastor (2005), the Gurson
model was validated as macroscopically representing a porous ma-
terial with spherical cavities, using both statical and kinematical
methods of limit analysis. The criterion that Gurson proposed for
an isotropic matrix containing cylindrical cavities is expressed as
follows, in plane strain:

(σx − σy)
2 + (2σxy)

2 + 8c2f cosh
σx + σy

2c
� 4c2(1 + f2) (1)

where f is the porosity rate of the material and c the flow stress
in shear or cohesion. When f = 0, this criterion reduces to the von
Mises criterion.

On the other hand, F. Pastor and Loute recently developed in
Pastor and Loute (2005) a general interior point algorithm to solve
statical problems of limit analysis. These optimization problems
present a linear objective function and a mix of linear and non-
linear convex constraints. For problems where the plasticity cri-
terion is the von Mises criterion, the non-linear constraints are
convex quadratic inequalities, giving rise to a conic programming
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problem for which efficient algorithms and codes exist (Ben-Tal
and Nemirovskii, 2001; MOSEK ApS, 2002). The Gurson criterion
leads to convex inequality constraints, which do not fit the second-
order conic programming (SOCP) formulation. Hence, an optimiza-
tion solver, adapted from an algorithm presented by Vial (1994),
was presented in Pastor (2001) and improved in Pastor and Loute
(2005) for solving the statical problems for von Mises and Gur-
son materials. Henceforth, this optimization solver will be called
ip-solver.

The classical solution of the kinematical problem is more com-
plex, especially in the Gurson case, because the dissipated power is
not always easy to take into account. In the present paper, this dif-
ficulty is bypassed using a specific mixed finite element method.
To our knowledge, the first mixed approaches were proposed by
Capurso in 1971 (Capurso, 1971) and by Anderheggen and Knopfel
in 1972 (Anderheggen and Knopfel, 1972) for continuous velocity
fields and piecewise linear criteria. A general mixed formulation of
the limit analysis problem in terms of loading parameters was also
given by Radenkovic and Son in 1972 (Radenkovic and Nguyen,
1972).

On the basis of Christiansen’s mixed formulation, fully inves-
tigated in Christiansen (1996), Ciria and Peraire (2004) extended
in 2004 the work of Anderheggen and Knopfel (1972) to discon-
tinuous linear velocity in plane strain, applying it to von Mises
materials using SOCP codes. The Anderheggen and Knopfel formu-
lation was also extended in 2005 to discontinuous linear velocity
by Krabbenhoft et al. (2005), where a velocity discontinuity seg-
ment is simulated by means of two thin finite elements. Though
based on the duality properties of linear programming assumed to
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be valid in the non-linear case, this approach appears to give kine-
matical solutions through a somewhat complicated formulation.
In any case, this formulation cannot be extended, as it is, to the
quadratic case without losing its kinematical character. Another di-
rect formulation, which uses convexity properties to strictly upper
bound the dissipated power on the linear discontinuity surfaces
was proposed in the mixed approach of Pastor et al. (2006a), pro-
viding rigorous kinematical solutions.

An extension to take into account discontinuous quadratic ve-
locity fields was first presented in a summarized form in Pastor
et al. (2006b, 2006c). Given in detail here, this extension is a
so-called mixed finite element method, but purely kinematical.
Thanks to the convex nature of the set of the plastically admissible
strain rates and to the convexity of the unit dissipation functions,
continuous or discontinuous quadratic velocity fields are taken into
account with no hypothesis on a stress field: only a finite set of
independent stress tensors appropriately located on the finite ele-
ments or on the discontinuity segments is needed. Particular atten-
tion is paid to the velocity discontinuities in order to demonstrate
that a direct extrapolation from the linear case cannot give rig-
orous upper bounds without additional conditions. The proposed
formulation fulfills all these requirements and is very easy to im-
plement.

We chose to test the method first on the problem of a notched
bar under lateral tensile stress, often used in the literature, and
on the problem of a bar compressed between rough rigid plates.
By using ip-solver, continuous and discontinuous quadratic veloc-
ity fields are analyzed in relation with the statical values obtained
as in Pastor and Loute (2005). Examples of a von Mises material
(for validation) and a Gurson material are tested in both prob-
lems. In all tests, the kinematical solutions come very close to
the statical solutions; the Gurson results, the first ones in limit
analysis – to our knowledge – also give an original set of rigorous
lower/upper bound values that are also very useful for validating
elastoplastic methods, for example. Somewhat unexpectedly, this
test also resulted in confirming that it is highly recommended to
post-verify the velocity fields given by an optimizer: in these tests,
ip-solver appears noticeably more reliable than commercial socp

codes, which in principle are well suited to the von Mises material.
In the following section we review the initial formulation of the

optimization method of Pastor and Loute (2005), limited only to
what is needed further. Then we present the proposed kinematical
mixed method, and its detailed application to two von Mises and
Gurson mechanical problems.

2. Interior point method and convex optimization

In Pastor and Loute (2005), a general interior point algorithm
for solving the statical problem of LA is detailed; this paper fo-
cused on solving the plane strain LA problems for both von Mises
and Gurson materials. The resulting optimization problems present
a linear objective function and a mix of linear and non-linear con-
vex constraints. For problems where the plasticity criterion is the
von Mises or Drucker–Prager criterion, the non-linear constraints
are convex quadratic inequalities, generating SOCP problems for
which efficient algorithms and codes exist. Indeed, this is not the
case with the Gurson criterion for example. The general form of
the optimization problems we will have to solve here is as follows:

max cT x

s.t. Ax = b,

g(x) + s = 0, s � 0, (2)

where c, x ∈ R
n , b ∈ R

m , A ∈ R
m×n is the matrix of the linear con-

straints, g = (g1, . . . , gp) is a vector-valued function of p convex

numerical functions gi , and s ∈ R
p
+ is the vector of slack variables

associated with these convex constraints.
The “primal-dual interior point method” consists in solving, in-

stead of the previous problem, the following one, parametrized by
μ > 0, the “barrier parameter”:

max

(
cT x + μ

p∑
i=1

ln(si)

)

s.t. Ax = b,

g(x) + s = 0, s > 0. (3)

Using the “primal-dual interior point method”, the problem (2),
has a solution if and only if the following conditions are satisfied:

−c + AT w +
(

∂ g

∂x

)T

y = 0,

Ax − b = 0,

g(x) + s = 0,

Y Se = μe, (4)

where w ∈ R
m , y ∈ R

p , e = [1 . . . 1]T ∈ R
p and Y , S are the diago-

nal matrices associated with y and s, respectively; μ > 0 and s > 0
imply y > 0.

For each given μ the non-linear system (4) is approximately
solved by one iteration of the Newton method, thereby providing
an approximate solution of the parametrized problem (3). Using
a sequence of values for μ decreasing to zero, we make the lat-
ter converging to the solution of (2). Indeed, as μ approaches 0,
Eqs. (4) come close to the KKT conditions for the original problem.

3. Limit analysis and variational formulation

For the sake of clarity, here we consider that the velocity fields
are continuous, with discontinuous fields analyzed later.

3.1. Reminder of LA

According to Salençon (see Salençon, 1974, 1983), a stress ten-
sor field σ is said to be statically admissible (SA) if equilibrium
equations, stress vector continuity, and stress boundary conditions
are verified. It is said to be plastically admissible (PA) if f (σ ) � 0,
where f (σ ) is the (convex) plasticity criterion of the material.
A field σ that is SA and PA here will be said to be (fully) ad-
missible.

Similarly, a strain rate tensor field v is kinematically admissible
(KA) if it is derived from a continuous velocity vector field u such
that the velocity boundary conditions are verified. It is said to be
plastically admissible (PA) if the flow rule (5) is verified, and the
fields u, v , which are KA and PA, will be called admissible in the
following.

v = λ
∂ f

∂σ
, f (σ ) = 0, λ � 0. (5)

The so-called associated flow rule (5) (or normality law) character-
izes the standard material of LA. In an equivalent manner, a stan-
dard material verifies Hill’s maximum work principle (MWP) (Hill,
1950), which states:

(σ − σ ∗) : v � 0 ∀ PA σ ∗ (6)

Consequently, the convex unit dissipated power π(v) is defined
as:

π(v) = σ : v if (5) or (6) is verified, (7a)

π(v) = +∞ otherwise. (7b)
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