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a b s t r a c t

We investigate the elastic wave propagation in bio-inspired hierarchical composites with
nacre-like and biocalcite-like architectures. These two types of architectures consist of hard
mineral and soft organic phases, which are hierarchically assembled to develop multilevel
of hierarchy.Wenumerically demonstrate thatmultiple band gaps andpassbands, covering
an ultrawide frequency range, arise in the proposed hierarchical composites with two
levels of hierarchy. We further reveal that the multilevel structural hierarchy itself is
responsible for this multiband characteristic. Specifically, the low frequency band gaps in
the composites with two levels of hierarchy are attributed to Bragg scattering, which are
intrinsically governed by the hierarchical and periodic modulation of constituent phases
at the second hierarchical level. By contrast, the multiple band gaps and passbands in high
frequency ranges correspond to waveguide modes, enabling the incident wave to be either
trapped inside the waveguides or efficiently transmitted through the waveguides. The
findings in this paper not only shed light on themechanisms responsible for themultiband
features of bio-inspired hierarchical composites, but also offer new opportunities towards
the design of compact and mechanically robust phononic crystals with the capability to
effectively manipulate wave propagation.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Manipulating acoustic and elastic wave propagation
using rationally designed architectures has attracted in-
creasing research interests in recent years. The peri-
odic architectures of phononic crystals, for example, can
modify phonon dispersion relations, providing avenues to
tailor group velocities and hence the flowof vibrational en-
ergy [1,2]. When the structural periodicities of phononic
crystals have the same order of magnitude as the wave-
lengths of acoustic and elastic waves, multiple scatterings
arise at the interfaces between constituent phases with
contrast in elastic constants. This mechanism gives rise to
complete wave band gaps, where propagation of phonons
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is prohibited, irrespective of incident angles. Interestingly,
even if the structural periodicity of phononic crystals is in-
terrupted by defects, it is still possible to effectivelymanip-
ulate wave propagation, such as wave bending and wave
splitting [3–8]. These capabilities make the perfect and de-
fective phononic crystals particularly suitable for design-
ing wave filters and waveguides [4,5,7,9–12].

Aside from the basic requirements of wave filtering
and waveguiding capabilities, a few novel attributes, in-
cluding multiple band gaps, subwavelength characteristic,
compact size, and outstanding mechanical performance,
are highly desirable in engineering practice. Conventional
phononic crystals, however, become inefficient when
these properties are simultaneously pursued. Inspired
by the fractal design of their counterparts in electro-
magnetic waves [13–16], phononic crystals with peri-
odic fractal architectures have been proposed recently
[17–19]. The rationally designed fractal architectures can
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give rise to multiple band gaps as well as the shifting of
band gaps towards lower frequency ranges for longitudinal
waves [17]. Similar to the fractal design of phononic crys-
tals, bio-inspired hierarchical composites with multilevel
structural hierarchies have been reported, which exhibit
a broadband wave filtering phenomenon [20]. In addition,
a multiobjective optimization method has been proposed
to achieve desired wave dispersion properties, including
simultaneous multiple passbands and stopbands in one-
dimensional layered systems [21,22]. These progresses in-
dicate that the desiredmultiple and broad band gaps could
be achieved by rationally designing the inherent architec-
tures of phononic crystals.

This paper aims to explore the elastic wave propagation
in bio-inspired hierarchical composites with nacre-like
and biocalcite-like architectures. These two types of archi-
tectures consist of hard mineral and soft organic phases,
which are hierarchically assembled to develop multilevel
of structural hierarchy (Fig. 1). Guided by the finite ele-
ment modelling, we show that multiple band gaps and
passbands, covering an ultrawide frequency range, arise in
the hierarchical composites with two levels of hierarchy.
In particular, low frequency band gaps, akin to the sub-
wavelength characteristic in acoustic metamaterials, exist
in the hierarchical composites with two levels of hierar-
chy. We emphasize that the mechanisms responsible for
themultiple band gaps and passbands are totally different,
depending on the frequency ranges of the band gaps and
passbands.

2. Numerical modelling

2.1. Characterization of the hierarchical composites

The proposed bio-inspired composites have a nacre-like
architecture and a biocalcite-like architecture with two
levels (N = 2) of structural hierarchy, where N is the
total number of structural hierarchy level (Fig. 1(a) and
(b)). In the nacre-like composite, the soft organic phase is
continuous, with the hard mineral platelets dispersed in
the soft organic matrix. In the biocalcite-like composite,
however, the soft organic platelets are distributed in
the continuous hard mineral phase. The two-dimensional
periodicity at each level of the hierarchical architectures
is characterized by a rhombic lattice with vectors an1 =

[(ln + tn)/2, tanαn · (ln + tn)/2], and an2 = [(ln +

tn)/2, − tanαn · (ln + tn)/2], where ln is the length of
the mineral platelet, tn is the thickness of the matrix, αn
is the lattice angle (Fig. 1(c) and (d)), and the subscript
n denotes the order of structural hierarchy level. In this
regard, the volume fraction of the mineral phase can be
defined as vfn = 2lnhn/[(ln + tn)2 · tanαn] for level n = 1,
2 of nacre-like composite and level n = 2 of biocalcite-
like composite; while for level n = 1 of biocalcite-like
composites, the volume fraction of mineral phase is given
by vfn = 1 − 2lnhn/[(ln + tn)2 · tanαn], where hn is the
height of the organic platelets at level n.

We assume the overall volume fractions of mineral
phase in the composites with N = 1 and N = 2 levels
of hierarchy are equal to Vfn = 0.80. To ensure the self-
similarity in each level of the composite with N = 2

levels of hierarchy, the volume fraction of mineral phase
in each level is given by vfn =


Vfn = 0.894. In addition,

the lattice angle is taken as αn = 30° in each level. We
further assume that for level n = 1 of the nacre-like and
biocalcite-like composites, l1 = 10 µm and t1 = l1/50 =

0.2 µm. Considering the trade-off between accuracy and
computational burden, we use four unit cells (nine layers
of hard minerals) along vertical direction in each level of
structural hierarchy. Then the parameters in level n = 2
can be calculated as l2 = 97.69 µm and t2 = l2/50 =

1.95 µm accordingly.

2.2. Numerical modelling of wave propagation

The governing equation of elastic wave propagation in
the hierarchical composites can be written as

− ρω2u =
E

2 (1 + ν)
∇

2u

+
E

2 (1 + ν) (1 − 2ν)
∇ (∇ · u) (1)

where u is the displacement vector, and ω is the angular
frequency. E, ν, and ρ are the Young’s modulus, the
Poisson’s ratio, and the density of each constituent phase,
respectively. Here we assume the constituent phases of
the hierarchical composites are homogeneous, isotropic
and linearly elastic. Their properties are characterized by,
Young’s modulus Em = 100 GPa, Poisson’s ratio νm =

0.30, and density ρm = 2950 kg/m3 for the mineral
phase, and Young’s modulus Eo = 1 GPa, Poisson’s ratio
νo = 0.30, and density ρo = 1350 kg/m3 for the organic
phase [23–27].

The transmission spectra of the elastic wave propaga-
tion in the proposed composites are calculated by perform-
ing frequency domain analyses. To model the normally
incident elastic wave propagating in the hierarchical com-
posites, a harmonic vertical displacement with an am-
plitude of 0.01 µm is applied on the top surface of the
composites with 1 × 4 supercells. Perfectly matched lay-
ers (PMLs) are applied at the two ends of the homogeneous
parts to prevent reflections by the scattering waves from
the domain boundaries [28]. In addition, periodic bound-
ary conditions are applied on the two lateral sides of the
composites to model the infinite periodicity of the su-
percells. The transmission coefficient is defined as φ =

(u + v) / (u0 + v0), where u and v are the amplitudes of
transmitted horizontal and vertical displacements, respec-
tively, and u0 and v0 are the amplitudes of applied hori-
zontal and vertical displacements, respectively. Since we
only apply a small amplitude vertical displacement, then
we have u0 = 0, and v0 = 0.01 µm in this study.

The phononic dispersion relations are constructed by
performing eigenfrequency analyses. To this end, Bloch’s
periodic boundary conditions are applied at the boundaries
of the supercell such that

ui (r + a) = eik·aui (r) (2)

where r is the location vector, a is the lattice translation
vector, and k is the wave vector.
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