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a b s t r a c t

We review analytical solutions for the asymptotic deformation and stress fields near the
tip of a crack in soft elastic solids. These solutions are based on finite strain elastostatics
and hyperelastic material models, and exhibit significantly different characteristics than
the classical crack tip field solutions in linear elastic fracture mechanics. Specifically, we
summarize some available finite strain crack tip solutions for two dimensional cracks,
namely that plane strain, plane stress, and anti-plane shear cracks in a certain class of
homogeneous materials. Interface cracks between soft elastic solids and a rigid substrate
are also discussed. We focus on incompressible material models with various degrees of
strain stiffening effect such as generalized neo-Hookean model, exponentially hardening
model and Gent model. We also explored the physical implications of the crack tip fields,
and highlighted pitfalls in the applications of these solutions, particularly the J-integral and
the distribution of true stress in the deformed configurationwhich have not been discussed
in the literature.

© 2015 Published by Elsevier Ltd.

1. Introduction

Studies on the fracture of soft materials can be dated
back to the 1950s where the first attempt to quantitatively
characterize and understand the rupture behaviors of rub-
ber was made in a number of seminal works [1–5]. Rivlin
and Thomas [1] conducted fracture experiments on nat-
ural rubber and found that the critical fracture load for
various testing configurations and sample geometries was
dictated by a single characteristic tearing energy, or frac-
ture energy. Based on this finding, they proposed an en-
ergy based fracture criterionwhere the onset of growth of a
pre-existing crack occurs when the applied energy release
rate is equal to a characteristic energy/area which in mod-
ern terms is called fracture energy — a characteristic of the
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material. Numerous experiments were carried out to
measure the fracture energy of rubbers and the results in-
dicated strong rate and temperature dependency for the
fracture energy [6], which are commonly attributed to en-
ergy dissipation due to viscoelasticity. Recently, interest
in soft material fracture has been renewed by the devel-
opment of hydrogels [7–11] or polymers [12] with high
extensibility and fracture toughness. Examples include
the double-network gel [7], the hybrid polyacrylamide–
alginate gel [8] and the ionically crosslinked triblock
copolymer gel [10]. These soft and yet tough materials,
when combinedwith additional functionalities, have great
potentials in a wide range of applications such as bio-
adhesives [13], biomedical implants [14], tissue engineer-
ing [15], and soft actuators [16].

The most common way to test the fracture behaviors
of soft materials is to first introduce a sharp crack in a
specimen and then mechanically load the specimen until
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List of main symbols and abbreviations

η1 (θ, n) Dimensionless function in (42b)
η2 (θ, n) Dimensionless function in (42c)
κ κ = 1 − 1/n in (36b).
µ Small strain shear modulus
(ρ, ϕ) Polar coordinates at deformed crack tip (see

Fig. 1(B))
σij

σαβ


Nominal stress or the first Piola–Kirchhoff
stress

τij

ταβ


True stress or Cauchy stress

ω (θ, n) Dimensionless function in (36c)
ξ0 Intermediate variable defined in (37c)
A, B Coefficients of strain energy density in plane

strain (see (34))
A2 Coefficient in plane stress crack tip solution

for exponential solids (see (69a))
a Coefficient in crack tip solution (see (35b),

(58b) and (76))
b0 Coefficient in plane strain crack tip solution

(see (35a))
b Material parameter in the generalized neo-

Hookean model (see (13))
c Coefficient in plane stress crack tip solution

(see (58a))
d Exponent of the crack tip solution of y1 in

plane stress (see (58a))
Fαβ 2-D deformation gradient
EM Exponentially Hardening Model introduced

in (14)
FEM Finite Element Method
GM Gent Model introduced in (15)
GNM Generalizedneo-HookeanModel introduced

in (13)
g (θ, n) Dimensionless function describing the an-

gular variation of y1 in plane stress (see
(58a))

H (θ, n) Dimensionless function introduced in (37a)
În (θ) Dimensionless function introduced in (42a)
I1 = I First invariant of the right Cauchy–Green

tensor Cij (see (6))
I2 Second invariant of the right Cauchy–Green

tensor (see (6))
J J-integral defined in (96a) and (96b)
Jn Material parameter in the exponentialmodel

or Gent solid (see (14) and (15))
KI , KII , KIII Mode I, II and III stress intensity factors in

linear elastic fracture mechanics
LEFM Linear Elastic Fracture Mechanics
m m = 1 − 1/ (2n) in (37b)
n Material parameter describing the degree of

strain hardening (see (13) and (34))
n∗ Critical strain hardening exponent at which

the plane stress crack tip field changes
behavior (see (58a) and n∗

≈ 1.46).
p Pressure required to enforce incompress-

ibility

P (θ, n) Angular variation of the pressure fields for
1/2 < n < 3/2 in (44a).

(r, θ) Polar coordinates at undeformed crack tip
(see Fig. 1(A))

U (θ, n) Dimensionless function introduced in (36a)
ui Components of the displacement of a mate-

rial point
W Strain energy density
Xα Material coordinates (see Fig. 1(A))
xα Deformed coordinates with origin at unde-

formed crack tip
yα Deformed coordinates with origin at de-

formed crack tip (see Fig. 1(B))
y∗
α Canonical form of mixed-mode crack tip

solutions (see (55))

the crack propagates forward. Compared to other fracture
tests which relies on the presence of initial defects to in-
duce local failure mechanisms such as cavitation [17–19],
the crack geometry provides a well-defined initial config-
uration where the stress distribution near the crack tip is
similar, independent of geometry. As long as the deviation
from the continuum description occurs over a region small
in comparison with typical specimen dimensions, the am-
plitude of the near tip stress fields controls the local failure
processes such as breaking of polymer chains, and growth
and coalescence of cavities. However, unlike stiff materi-
als such as metal and ceramics, cracks in soft and tough
materials can become highly deformed and blunted before
propagation [20]. This can be further complicated by time-
dependent effects such as viscoelasticity [6] and poroelas-
ticity [21,22]. Therefore, the classical solutions for crack tip
fields in linear elastic fracture mechanics (LEFM), or the
K -field [23], which were based on the assumption of in-
finitesimal deformation, are not sufficient to describe the
local crack tip stress field in soft materials. For exam-
ple, experimental observations and theoretical analyses
suggested that the LEFM crack tip fields broke down for
dynamic [24–28] or quasi-static cracks [25,28,29] in soft
polymeric gels.

A first step towards understanding crack tip fields in
soft materials is to take large deformation effects into
consideration by adopting the framework of finite strain
elastostatics. The earliest effort along this direction was
due to Wong and Shield [30], where closed form approx-
imate solutions for a plane stress crack in a sheet of in-
compressible neo-Hookeanmaterial were presented. After
that, Knowles and Sternberg [31,32] performed the first
systematic asymptotic analysis of near-tip fields for a plane
strain crack under symmetric opening deformation (Mode-
I). They considered a class of power-law stiffening com-
pressible hyperelastic solids, and show that the severity
of the singular stress and deformation fields depends
on material stiffening. The amplitudes of these singular
stress and deformation fields are governed by far-field
loading conditions and are analogous to the stress inten-
sity factors in LEFM [33,23]. These pioneering works in-
spired further studies to understand the local stress and



Download English Version:

https://daneshyari.com/en/article/774542

Download Persian Version:

https://daneshyari.com/article/774542

Daneshyari.com

https://daneshyari.com/en/article/774542
https://daneshyari.com/article/774542
https://daneshyari.com

