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Some solid electrolytes exhibit the non-Arrhenius type ionic conductivity whose origin is still not well
understood. In the present study, a model for the non-Arrhenius ionic conductivity is proposed by exploiting
the formulation of the bond strength–coordination number fluctuation (BSCNF) model developed originally to
describe the transport properties of supercooled liquids. According to the present model, the origin of the non-
Arrhenius ionic conductivity as described by the VFT equation traces back to the bonding energy fluctuations
of the diffusing ions within the solid. The model suggests that good ionic conductors exhibit a non-Arrhenius
behavior in the ionic conductivity. The present study reveals also that the degree of the non-Arrhenius behavior
of differentmaterials is separated roughly into two groups depending on the nature of the chemical bonds. One of
these groups consists mainly of compounds such as Ag ion conductors, and the other group contains materials
such as Li ion conductors.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Most ionically-conducting solid materials that have promising field
of applications in batteries, fuel cells, and other electrochemical devices
[1,2], show Arrhenius temperature dependence in the dc ionic conduc-
tivity [1–4]. It is well established that the Arrhenius-type temperature
dependence is explained based on the theory of point defects in crystal-
line materials [4]. In recent decades, however, the non-Arrhenius tem-
perature dependence of ionic conductivity has been found in different
types of solid ionic conductors [5–9]. For example, the pioneering
work by Kincs andMartin [5] demonstrated that ion-conducting glasses
optimized by doping metal halide exhibit an Arrhenius behavior at low
temperature, while a deviation from the Arrhenius behavior is clearly
observed at high temperature. In this regard, the result reported by
Kincs and Martin [5] has attracted much interest, because their
measurement of the ionic conduction shows both, the Arrhenius and
the Vogel–Fulcher–Tammann (VFT)-like behaviors in a continuous pat-
tern [5–7]. In addition, it was also suggested by the same authors [5]
that the non-Arrhenius temperature dependence of the ionic conductiv-
ity is a ubiquitous feature in optimized fast ionic conducting glasses.
Motivated by their work, a large number of studies have been done to
understand the behavior of the non-Arrhenius ionic conductivity
[9–15]. For instance, the ion trapping model [9,10] and the coupling
model [11] have been applied to account for the peculiar behavior of

the ionic conductivity. The problemof non-Arrhenius ionic conductivity
has been also tackled in our research group [14,15]. According to a
model developed based on the Zwanzig model of diffusion, the non-
Arrhenius behavior becomes apparent when the lifetime of the oscillat-
ing particle in a potential well becomes comparable with the inverse of
oscillation frequency [14]. The proposed model applied to different
materials indicated that the non-Arrhenius behavior can be described
as a result of the interplay between carrier generation and relaxation
processes [15]. These studies provided a background to understand
the phenomenon of non-Arrhenius ionic conductivity. However, these
works have little relation with the model presented here. The model
presented in the present study is completely independent from the
previous one.

Regarding the temperature dependence of the ionic conductivity,
different types of non-Arrhenius behavior are observed, such as the pos-
itive curvature upwardswhen the temperature is increased [16,17], and
the behavior described by a single VFT equation in a wide temperature
range [18,19]. From a fundamental point of view, it is of primordial
importance to understandwhy a bending behavior of the ionic conduc-
tivity emerges in the solid state, and how such behavior is related to
other physical quantities known as key parameters in the study of struc-
tural relaxation, such as the fragility [20] and the decoupling index [21].

In the analysis of the temperature dependence of dc ionic conductiv-
ity that exhibits a convex shape upwards when the conductivity is plot-
ted versus the inverse of temperature, the VFT equation or its modified
version have been often used to describe the measured data [18,19,22].
The interpretation of the result by the VFT-type expression, however, is
still being debated heatedly even today. Regarding this point, in one of
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our recent studies, an interpretation of the VFT-like pattern for the
viscosity of supercooled liquids was given in terms of the bond
strength–coordination number fluctuation (BSCNF) model [23] origi-
nally proposed by one of the authors [24]. According to the BSCNF
model, the effective activation energy and the Vogel temperature, BVFT
and T0 of the VFT expression, correspond to the mean value of the
bond energy and its fluctuations, respectively. The BSCNF model com-
bined with the fractional Stokes–Einstein law has been applied to
study the ionic conductivity in ionic liquids [25]. The successful applica-
tion of the BSCNFmodel in the study of transport properties in the liquid
phase prompted us to apply the concept of the model to treat the prop-
erties in the solid phase. In the present study, with the objective to un-
derstand the origin of the non-Arrhenius ionic conductivity in solid
materials, we propose a model for the ionic conductivity by exploiting
the formulation of the BSCNF model. In addition, by relating the model
with the bonding trends of thematerials, we show that from the chem-
ical bond point of view, one can deduce a condition for the occurrence of
high ionic conductivity in solid ionic conductors. In what follows, we
discuss the properties of solid ionic conductions in terms of the
proposed model. A preliminary result of the research was presented in
a minor conference proceeding [26]. There, the analysis was focused
mainly in Ag ion conductors. The present paper reports an extended
version of the study. We have included the whole derivation of the
model supplementingwith the detailed explanation on the background
and extended discussions. New results not addressed in the previous
report are also included. In particular, we have extended the analysis
to compounds other than Ag ion conductors.

2. Model for the ionic conductivity

In a solid material, each ion oscillates in a potential well formed by
the surrounding ions, and some of these can escape from the potential
well with a certain probability that follows the Boltzmann distribution
law [27]. Under the action of an external field, the net event of these
processes results in the macroscopic transport property observed in
solid materials. When the mobile ion overcomes the potential barrier
by hopping to an adjacent site, the bonds connecting the oscillating
ions to the surrounding components are broken. Thus, the mobile ion
is excited to a site with higher energy. The series of such processes are
mediated by the bond-breaking which is triggered by thermal
fluctuation.

The above picture of ionic excitation is often represented by the
Arrhenius equation. On the basis of this expression, the mean residence
time of the ion placed in a potential well can be written as

τ ¼ ν−1 exp ~E~Z=RT
� �

; ð1Þ

where, ν represents the oscillation frequency of the ion trapped in the
potential well, Ẽ is the bond energy between the mobile and the sur-
rounding ion, Z̃ is the coordination number of the mobile ion, and R is
the gas constant. From the point of view of themobile ion, the bond en-
ergy and the coordination number vary depending on the sites that the
mobile ion occupies, and thus, Ẽ and Z̃are thought to have distributions.

Based on the above discussion, the mean residence time of the
mobile ions can be determined statistically. Namely, denoting by i the
different sites that the mobile ion can occupy, the mean residence
time τ is written as

τ ¼
X
i

Piτi; ð2Þ

and

X
i

Pi ¼ 1; ð3Þ

where Pi is the concentration of the i site. From the point of view of
diffusing ion, the available sites along the diffusion path are distributed
continuously. Hence, Eq. (2) is rewritten as

τ ¼ ν−1
Z∞
−∞

Z∞
−∞

d~Ed~Z f ð~EÞgð~ZÞ exp
~E~Z
RT

 !
: ð4Þ

Here, f(Ẽ) and gð~ZÞ are the distribution function of Ẽ and ~Z, respec-
tively. By adopting the Gaussian distribution function for f(Ẽ) and gð~ZÞ,
Eq. (4) reduces to

τ ¼ ν−1Tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2− Δ~EΔ~Z=R

� �2r exp
~E0~Z0=R

T−Δ~EΔ~Z=R

 !
; ð5Þ

where Ẽ0 and ~Z0 are themean values of Ẽ and Z̃ and ΔẼ andΔZ̃ are their
fluctuations. In the derivation of Eq. (5), it was assumed that the fluctu-
ations of Ẽ and Z̃ normalized by their mean values are equal each other,
that is, Δ~E=~E0 ¼ ΔZ̃=Z̃0. As long as this condition is satisfied, Eq. (4) re-
duces to the VFT-like expression given in Eq. (5). Themathematical der-
ivation of Eq. (5) is analogous to that of the BSCNFmodel of viscosity for
supercooled liquids [23]. However, it is important to note that the
physical meanings of the parameters are different. In the case of liquids,
the quantities E0, Z0, ΔE and ΔZ are associated with the structural units
or group of atoms, whereas in the present model which deals with
atomic transport in the solid state, they correspond to atoms or ions.

Once having an expression for the residence time τ, we obtain the
expression of the ionic conductivity by using the expression for the dif-
fusion coefficient D = gl2/τ, and the Nernst–Einstein relation, σ =
(Ze)2nD/fkBT [3], where g is the geometrical factor, l is the jumpdistance,
Ze is the charge of the ion, f is the correlation factor, and n is the concen-
tration of the mobile ions. Using the above relations together with
Eq. (5), we finally obtain an expression for σ as

σT ¼
AσT

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2− Δ~EΔ~Z=R

� �2r
T

exp −
~E0~Z0=R

T−Δ~EΔ~Z=R

 !
: ð6Þ

In this equation, AσΤ is defined as AσΤ = gν(Ze)2l2n/fkB. In the next
section, we will discuss the ionic conductivity by applying Eq. (6) to
solid electrolytes.

3. Application of the model

Fig. 1 shows the temperature dependence of the ionic conductiv-
ity of some solid ionic conductors. The symbol and the solid line de-
note the experimental data and the theoretical curves drawn by
using Eq. (6), respectively. The values of the parameters for each ma-
terial determined by fitting the experimental data are given in
Table 1. From Fig. 1, we can see that Eq. (6) describes well the exper-
imental data over a wide temperature range, excepting Ag6SnS4Br2,
which shows a sudden drop at around 234 K. Nonetheless, Eq. (6) de-
scribes reasonably well the experimental data that ranges from Ar-
rhenius to VFT-like behaviors. In particular, it is noted that Eq. (6)
describes well the behavior of 0.8Na2S + 0.2B2S3, Li0.5La0.5TiO3 and
Li10(SiO4)6O3 which show Arrhenius-type behavior. For these cases,
the Arrhenius-like behavior is reproducedwhen the following condi-
tion is satisfied,

T≫Δ~EΔ~Z=R: ð7Þ
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