Contents lists available at ScienceDirect

Engineering Fracture Mechanics

journal homepage: www.elsevier.com/locate/engfracmech

Sensitivity and uncertainty quantification of the cohesive crack model

M.A. Hariri-Ardebili, V.E. Saouma*

Department of Civil Engineering, University of Colorado, Boulder, CO, USA

ARTICLE INFO

Article history: Received 20 June 2015 Received in revised form 1 December 2015 Accepted 9 January 2016 Available online 22 January 2016

Keywords: Cohesive crack model Sensitivity Uncertainty quantification Fragility Capacity curve

ABSTRACT

The zero thickness, fracture mechanics inspired cohesive crack model has been widely used in its various formulations. The constitutive model being formulated in terms of about fourteen parameters, yet only few can be measured experimentally, and other must be estimated.

This paper performs a sensitivity analysis to assess the relative importance of each of the parameters resulting in the model Tornado diagram. For the most sensitive parameters, uncertainty quantification is performed through Latin hypercube sampling to determine capacity and fragility curves. Finally, impact of correlation among the parameters is assessed.

The study is conducted by performing pushover analysis of a simple interface element under mode I and II, and dynamic analysis of a dam with joint elements subjected to mixed-mode fracture. This investigation leads to a probabilistic-based safety assessment of structures which responses is primarily governed by cohesive cracking.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Zero thickness interface elements were first developed in the context of rock mechanics [1]. Cohesive crack models were in turn first proposed by [2,3]. Indeed [4] has shown that any elasto-plastic material does have a cohesive zone and does exhibit a size effect. Cohesive crack models have indeed gained much acceptance as an alternative to linear elastic fracture mechanics. As to cementitious materials, the Hillerborg's cohesive crack model [5] defined a new class of fracture mechanics-based interface elements [6–9]. They are used in the context of the so-called discrete crack model (as opposed to smeared crack model) in the finite element simulation of cracking. These finite elements will be collectively referred to as cohesive crack models subsequently. Those elements were used in the context of numerous applications in quasibrittle materials (primarily concrete, but also rock, ceramics, stiff soil) [10,11], or through simplifications of these models in the context of blast such as [12].

The cohesive elements would typically be formulated in terms of well over ten parameters (described below). A major challenge in their use is the selection of the parameters as only few can be measured experimentally, and the remaining must be estimated. Hence, a critical question is how important is the accurate estimate of each of the model parameters. This can only be achieved through sensitivity and uncertainty analyses.

Sources of uncertainty can in be traced to one of eight groups [13]. Chief among them is the basic random variables (RVs), $\mathbf{X} = (X_1, \dots, X_n)$. The RVs in turn can be categorized as aleatory or epistemic [13]. An aleatory uncertainty is presumed to be

http://dx.doi.org/10.1016/j.engfracmech.2016.01.008 0013-7944/© 2016 Elsevier Ltd. All rights reserved.

^{*} Corresponding author.

Nomenclature	
FDD	engineering demand parameter
	engineering demand parameter
IIVI	Intensity measures
LHS	Latin hypercube sampling
LS	limit state
MCS	Monte Carlo Simulation
PGA	peak ground acceleration
POA	pushover analysis
RV	random variable
CSD	crack sliding displacement
COD	crack opening displacement
STD	standard deviation
COV	coefficient of variation
GM	ground morion
$S_{a}(T)$	spectral acceleration
X	vector of basic random variables
Xi	basic random variable
C	cohesion
φc	angle of friction
$f_{.}^{\varphi_{f}}$	tensile strength
J_t τ_1 τ_2	tangential components of the interface traction vector
σ	normal traction component
ט 20	two-dimensional
20	three dimensional
JD vieff	norm of the inelastic displacement vector
u ui	inclustic displacement
u [.]	diante com ent
u v ^e	
<i>u</i> ^e	elastic displacement
u ^p	fracturing displacement
u' Cl	
G _F	mode i fracture energy
G_F^n	mode II fracture energy
$s_{1\sigma}$	tensile stress at break-point
$w_{1\sigma}$	COD at break-point
<i>s</i> _{1<i>c</i>}	cohesion at break-point
w_{1c}	CSD at break-point
<i>k</i> t	tangential stiffness
k_n	normal stiffness
ϕ_d	dilatancy angle
γ	relative irreversible deformation
$u_{D_{max}}$	maximum displacement for dilatancy
$\ \cdot\ $	norm operator
\mathfrak{D}	damage parameter
k _{ns}	secant of the normal stiffness
k _{no}	initial normal stiffness
A_o	total interface area
A_f	fractured interface area
n	number of RVs
Ν	number of input parameters in model
X_i^{mean}	mean value of the <i>i</i> th RV
X_i^{\min}	minimum value of the <i>i</i> th RV
X ^{max}	maximum value of the <i>i</i> th RV
(Ref	reference response of sensitivity analysis
O ^{min}	response of sensitivity analysis with V^{\min}
o ^{max}	response of considuity analysis with X_i^{max}
e swing	response of sensitivity analysis with X_i^{max}
Θ_i^{swing}	swing of the response in <i>i</i> th RV
Θ	response of sensitivity analysis subjected to X
S	vector of RV's number
D	distributional model

Download English Version:

https://daneshyari.com/en/article/774582

Download Persian Version:

https://daneshyari.com/article/774582

Daneshyari.com