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a b s t r a c t

In this work the linear elastic properties of materials containing spherical voids are calculated and
compared using finite element simulations. The focus is on homogeneous solid materials with spherical,
empty voids of equal size. The voids are arranged on crystalline lattices (SC, BCC, FCC and HCP structure)
or randomly, and may overlap in order to produce connected voids. In that way, the entire range of void
fraction between 0.00 and 0.95 is covered, including closed-cell and open-cell structures. For each
arrangement of voids and for different void fractions the full stiffness tensor is computed. From this, the
Young's modulus and Poisson ratios are derived for different orientations. Special care is taken of
assessing and reducing the numerical uncertainty of the method. In that way, a reliable quantitative
comparison of different void structures is carried out. Among other things, this work shows that the
Young's modulus of FCC in the (1 1 1) plane differs from HCP in the (0 0 0 1) plane, even though these
structures are very similar. For a given void fraction SC offers the highest and the lowest Young's modulus
depending on the direction. For BCC at a critical void fraction a switch of the elastic behaviour is found, as
regards the direction in which the Young's modulus is maximised. For certain crystalline void arrange-
ments and certain directions Poisson ratios between 0 and 1 were found, including values that exceed
the bounds for isotropic materials. For subsequent investigations the full stiffness tensor for a range of
void arrangements and void fractions are provided in the supplemental material.

© 2016 Elsevier Masson SAS. All rights reserved.

1. Introduction

Introducing spherical voids into a solid and otherwise homo-
geneous and isotropic material changes its mechanical properties
significantly. Such materials are currently generated using tem-
plating techniques (Yin et al., 2012), by integrating hollow spheres
in a matrix (Kenig et al., 1985) or by direct foaming (Testouri et al.,
2010, 2012). The voids of the resulting material can be arranged in
an ordered or in a disorderedmanner. It is therefore of considerable
interest to compare the mechanical properties of different ordered
and disordered void structures, including the case where the voids

overlap.
When direct foaming is used, the equal-volume bubbles tend to

organize themselves on a close-packed lattice in densest packing
(Heitkam et al., 2012). Depending on the precise method of gen-
eration, the void arrangement may be chosen to be dominated by
FCC (face-centred cubic) or HCP (hexagonal close-packed)
arrangement (Heitkam et al., 2012; Drenckhan and Langevin,
2010). This raises the practically relevant question whether one of
these arrangements should be preferred over the other, due to
advantageous mechanical properties of the resulting solid void
material.

Porous materials show a very rich range of non-linear me-
chanical behaviour, including plastic deformation, buckling and
rupture. Here, we concentrate on the linear elastic behaviour, cor-
responding to infinitesimally small strain. The complementary* Corresponding author.
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problem, the elastic properties of crystalline arrangements of solid
spheres, has been investigated experimentally and numerically by
several authors (Radjai et al., 1999; O'Hern et al., 2001;
Mueggenburg et al., 2002; Sanders and Gibson, 2003; Ngan, 2004;
Yin et al., 2012; An and Yu, 2013). The elastic properties of the void
material of these packings, however, have not yet been investigated
sufficiently and comparatively.

Before computers made their breakthrough in science, the
elastic properties of void material were estimated by superposition
of the effects of a single void (Hill, 1965; Budiansky, 1965; Iwakuma
and Nemat-Nasser, 1983). These methods yield good results for low
void fraction. However, with increasing void fraction, higher orders
of interaction between the voids have to be taken into account
(Eischen and Torquato, 1993; Torquato, 1997, 1998). Christensen
(Christensen, 1990) compared different micro-mechanic models
available at that time. In 1992, Day et al (Day et al., 1992). developed
a simple Finite Element Method (FEM) to calculate the elastic
properties of a two-dimensional material with circular voids. They
investigated the influence of void fraction and topology separately
and devised a simple analytical explanation for the calculated
values. After 1992, increasing computer power became available for
many research groups, resulting in further direct numerical simu-
lations of the interstitial material of sphere or bubble arrangements
in three dimensions (Segurado and Llorca, 2002; Ni and Chiang,
2007; Bouhlel et al., 2010; Saadatfar et al., 2012). In 2006, Ni et al
(Ni and Chiang, 2007). calculated the Young's modulus of a simple
cubic void structure and compared their results to analytical esti-
mations of (Iwakuma and Nemat-Nasser, 1983) and (Cohen, 2004),
which are used later for comparison.

The agreement between analytical (Cohen, 2004; Iwakuma and
Nemat-Nasser, 1983) and numerical (Ni and Chiang, 2007) methods
was very good. However, the graphs of Young's modulus versus
void fraction depend only weakly on the structure. Thus, small
derivations between the graphs raise the question, as to whether a
difference results from the uncertainty of the method or rather
from the structural differences of the investigated materials. In
order to reliably extract the structural effects, one therefore needs
to apply an identical numerical method to different structures,
taking great care of the numerical uncertainty. Additionally, many
of the available studies are confined to low or medium void
fractions.

In this paper, a comparative study of a wide variety of dense
sphere packings is carried out, revealing the influence of the
structure on the elastic properties. The entire range of void frac-
tions is considered, as illustrated in Fig. 1. Small voids form closed-
cell void material with low void fraction. Retaining the regularly
arranged void centres and increasing the diameter the voids touch
each other at a certain void fraction ftv,ouch, forming closed-packed
void material. At even higher void fractions, the voids overlap,
forming open-cell void materials.

2. Material and methods

2.1. Definition of sphere structures

Monodisperse spheres or microbubbles tend to crystallise when
they become agglomerated. This means that their centres form a
periodic, crystalline lattice. Since these systems strive for densest
packing, they are usually arranged in the hexagonally close-packed
(HCP) or face-centred cubic (FCC) structure, both providing equally
dense sphere packings (Weaire and Aste, 2008). For comparison,
simple cubic (SC) and body centred cubic (BCC) arrangements are
also taken into account here. If the spheres are slightly polydisperse
or if the agglomeration process is too fast to allow for relaxation,
random closed-packed (RCP) structures are created.

From the different structures mentioned above, rectangular or
cubic representative volume elements (RVE) were derived which
are shown in Fig. 2. Except for SC, the RVE does not coincide with
the primitive cell of the crystalline arrangements. Rather, it is the
smallest cuboid cell which may be periodically combined to
represent the complete structure, because the numerical method
only allows for orthogonal, periodic boundaries. Parameters of the
chosen RVE are given in Table 1. Note that for FCC two different
RVEs were applied and compared. The cubic RVE, labelled FCC, is a
cube, bounded by planes in (100), (010) and (001). The hexagonal
RVE, labelled FCCh, is a cuboid, bounded by (111), ð110Þ and ð112Þ
planes. This provides an additional test of the method applied by
comparing the Young's moduli of the different RVE of the same
structure. This is explained in more detail in Section 2.4 below. The
RCP structure is special, since it does not correspond to a crystalline
lattice, but it does involve periodic boundary conditions. The sphere
positions for this case were generated using a gas-dynamic algo-
rithm that is freely available (Skoge et al., 2006). Drugan et al
(Drugan and Willis, 1996; Drugan, 2000). found, that with six
spheres in an RVE of disordered voids, the statistical uncertainty of
the mechanical properties is below 5%. Aiming for very high ac-
curacy, here RVEs with 30 spheres were generated. The statistical
uncertainty resulting from this type of RVE was investigated, as
reported in Section 2.4 below.

The solid fraction fs ¼ Vsolid/VRVE of a void material is the ratio of
the volume of solid material Vsolid contained in a given RVEwith the
volume VRVE. The void fraction fv ¼ 1 � fs is the ratio between the
void volume Vvoid and the total volume of the RVE. In case of
separated spherical voids, the void volume can be calculated from
the sum of the volume of each spherical void contained in a given
RVE. In this case, the void fraction depends on the sphere diameter
D, the lattice spacing L, and the packing density fv,touch for touching
spheres of the structure considered

1� fs ¼ fv ¼
Vvoid

VRVE
¼ fv;touch

�
D
L

�3

¼ fv;touch

�
1� ll

L

�3

: (1)

Fig. 1. Void material with spherical voids of equal size in face-centred cubic arrangement at different void fractions. a) closed-cell structure at fv¼ 0.09, b) touching spheres at
fv ¼ 0.74 and c) open-cell structure at f v¼ 0.95.
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