ARTICLE IN PRESS

Solid State Ionics xxx (2014) xxx-xxx

Contents lists available at ScienceDirect

Solid State Ionics

journal homepage: www.elsevier.com/locate/ssi

Delamination-resistant bi-layer electrolyte for anode-supported solid oxide fuel cells

Mi Young Park, Yeon-Gil Jung, Hyung-Tae Lim*

School of Materials Science and Engineering, Changwon National University, 20 Changwondaehak-ro, Changwon, 641–773, Republic of Korea

A R T I C L E I N F O

Article history: Received 17 June 2013 Received in revised form 21 January 2014 Accepted 19 February 2014 Available online xxxx

Keywords: Solid oxide fuel cells Bi-Layer Cell Imbalance Delamination Degradation

ABSTRACT

One of the critical fuel cell degradation phenomena is 'cell imbalance' in a series-connected stack, which can cause abnormal operation under a negative cell voltage and consequently rapid degradation by anode interface delamination. In a previous study, the effect of electrolyte composition on the electrochemical degradation of solid oxide fuel cell (SOFC) was investigated, and it was observed that a small amount of ceria (an electronic conducting material) prevents anode delamination under abnormal (negative voltage) operation. However, the open circuit voltage (OCV) was lowered as a result of reduction of ceria. In the present study, bi-layer, YSZ (8 mol % yttria doped zirconia, a predominantly ionic conductor) at the cathode side and 8CYSZ (8 mol % ceria doped YSZ, a mixed ionic-electronic conductor) at the anode side were fabricated for anode-supported cells with a Pt probe embedded in each layer to estimate the internal oxygen chemical potential and tested under a negative voltage. The results indicated that the OCV was close to the theoretical value (similar to that of a YSZ single layer cell) and no delamination was observed under negative voltage operation (similar to the case of an 8CYSZ single-layer cell). Therefore, the bi-layer-structured electrolyte (with locally increased electronic conduction at the anode side) is effective in preventing anode/electrolyte delamination as well as maintaining open circuit voltage.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Commercially available alkaline and lithium batteries usually have a warning on their packaging saying "may explode or leak if mixed with a different battery type." This is a warning against the phenomenon of cell imbalance. If cell imbalance exists in a series-connected battery pack, the entire battery pack as well as the imbalanced (bad) cell characterized by a higher resistance or lower capacity can be operated under a negative voltage, consequently causing damage during operation [1–6]. This cell imbalance problem is not limited to series-connected battery packs; the electrochemical degradation caused by negative voltage operation is also possible for a series-connected fuel cell stack [7,8].

In a previous study, YSZ electrolyte – anode supported cells were tested with an applied DC bias in order to study the SOFC stack failure mechanism by simulating abnormal behavior in a single cell test [7]. It was observed that the cell resistance rapidly increased when the cell was subjected to a negative voltage at a constant current. The degradation was caused by delamination, which developed along the anode interface during the negative voltage operation. When a cell is operated under a negative voltage, the ionic (I_i) and electronic current (I_e) directions through the electrolyte are the same, so that both I_i and I_e have negative signs. In such cases, a high internal p_{O_2} (partial pressure of oxygen) can be formed in the electrolyte just under the anode interface (depending upon ionic and electronic transport properties across

http://dx.doi.org/10.1016/j.ssi.2014.02.013 0167-2738/© 2014 Elsevier B.V. All rights reserved. interfaces), and it eventually leads to physical damages (delamination) at the interface [7–12]. Note that the electronic conduction should be taken into account even in a predominately oxygen ionic conductor such as YSZ under the assumption of local equilibrium, i.e., $O^{2-} \Leftrightarrow \frac{1}{2}O_2 + 2e^-$ [9,13,14]. In terms of (electro)chemical potential, the local equilibrium can be described as

$$\nabla \varphi + \frac{1}{2e} \nabla \widetilde{\mu}_{0^{2-}} = \frac{1}{4e} \nabla \mu_{0_2} \tag{1}$$

where μ_{0_2} is the chemical potential of neutral oxygen, $\tilde{\mu}_{0^{2-}}$ is the electrochemical potential of the oxygen ion, φ is the reduced (negative) electrochemical potential of the electrons or the electric potential, which is defined as $\varphi = -\frac{\mu_e}{e}$, where $\tilde{\mu}_e$ and *e* are the electrochemical potential potential of the electronic charge, respectively.

When the electrolyte is a mixed ionic–electronic conductor (MIEC), $\nabla \varphi$ through the electrolyte is much smaller than that of a predominantly ionic conductor [15]. Accordingly, as shown in Eq. (1), $\nabla \mu_{0_2}$ must be different for an MIEC and a predominantly ionic conductor, because $\nabla \mu_{0_2}$ is linked to the corresponding $\nabla \varphi$. Electronic conduction, which is determined by the electrolyte composition, plays an important role in the electrolyte's thermodynamic stability; 8 mol% ceria (an electronic conducting material) doped in YSZ, namely 8CYSZ, improved the durability under negative voltage operation, which means that a small amount of ceria effectively prevented the development of high p_{0_2} inside the electrolyte [16]. However, the open-circuit voltage (OCV) of

^{*} Corresponding author.

2

ARTICLE IN PRESS

M.Y. Park et al. / Solid State Ionics xxx (2014) xxx-xxx

the 8CYSZ cell was lower than the theoretical value because of internal electronic leakage through the electrolyte, indicating a lower power density than that of a YSZ cell. A potential method of preventing loss of electromotive force in MIEC electrolyte cells is the use of a bi-layer structure [17,18].

C

In the present study, a bi-layer-structured electrolyte, with YSZ at the cathode side and 8CYSZ at the anode side, was fabricated and investigated, with a view to improving the OCV and the electrochemical stability under negative voltage operation. In addition, a Pt probe (electron selective probe) was embedded both in the YSZ and 8CYSZ electrolytes,

~ 35µm	Spectrum 8YSZ Layer 8CYSZ Layer			8YSZ Layer Spectrum I 8CYSZ-Layer		
Element	Weight %	Atomic %		Element	Weight %	Atomic %
Y	13.68	13.98		Y	12.87	13.57
Zr	86.32	86.02		Zr	78.50	80.66
Total	100.00			Ce	8.63	5.77
				Total	100.00	

Fig. 1. SEM images of the cross section of the bi-layer electrolyte; (a) the embedded Pt probe #1 in the YSZ electrolyte ~10 µm from the cathode interface; (b) the embedded Pt probe #2 in the 8CYSZ ~10 µm from the anode interface; (c) the boundary between the YSZ layer (17 ~ 18 µm) and the 8CYSZ layer (17 ~ 18 µm) with EDS analysis results.

Download English Version:

https://daneshyari.com/en/article/7746424

Download Persian Version:

https://daneshyari.com/article/7746424

Daneshyari.com