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a b s t r a c t

This paper is concerned with obtaining exact solutions for the bending problem of an elastic nanobeam
by using the Lurie’s operational method. Within the framework of nonlocal elasticity theory, a general
governing equation, capable of capturing the size effect, is first constructed in a systematic and
straightforward manner. Then a solution methodology is described. Some explicit solutions involving
trigonometric expansions are also presented and compared with other well known beam theories. The
results indicate that this general beam theory can provide more accurate results, which can be served as
benchmarks for other theoretical or numerical methods.

� 2014 Elsevier Masson SAS. All rights reserved.

1. Introduction

The nanomaterials in the form of rods, beams, plates and shells
are widely used in cutting-edge fields, such as sensing, communi-
cations and energy harvesting. They offer excellent performance
from the mechanical, electrical, optical and chemical point of view.
However, when the structure scales down to nano-domains, an
issue of considerable importance, namely, the size effect arises and
becomes prominent (Murmu and Adhikari, 2012). The nonlocal
elasticity theory, among various higher-order continuum theories
that contain additional material length scale parameters, has thus
been proposed to develop size-dependent continuummodels.With
this theory, a nonlocal version of the Euler-Bernoulli beam (EBT)
model was initially established by Peddieson et al. (Peddieson et al.,
2003) to account for the size effect. In this model, the shear
deformation effect was supposed to be neglectable. This assump-
tionmay be appropriate for slender beams, but formoderately deep
beams, it underestimates the deflection. To remedy this weakness,
many suggestions have been made to improve the deflection esti-
mations. Timoshenko beam theory (TBT) (Benzair et al., 2008;
Reddy, 2007; Reddy and Pang, 2008; Wang et al., 2008a), Reddy
beam theory (RBT) (Reddy, 2007), as well as various higher-order
shear deformation beam theories (HOSD) (Aydogdu, 2008, 2009;

Thai, 2012; Thai and Vo, 2012) were developed successively.
Nevertheless, all these nonlocal beam theories are based on various
kinds of hypotheses, which assume the forms of stress or
displacement distribution along the thickness. Thus, the applica-
tions of these beam theories are also limited due to those approx-
imations inherent in the derivations, which make the solutions
inconsistent with all the fundamental equations of nonlocal elas-
ticity. Consequently, more exact theory still deserves great
attention.

Operational calculus, stemmed from Heavside’s trailblazing
contributions (Lindell, 2000; Petrova, 1987), sheds light on this
effort, which initiates two routines in developing two and three
dimensional exact elastic models. These methods can be collec-
tively referred to as the method of initial functions, by which the
unknown stresses and displacements are expressed by initial
functions and their derivatives defined in a reference plane. The
procedure suggested by Vlasov was in a mixed form (Vlasov, 1957),
in which the basic desired stress and displacement are expanded in
power series with the expansion coefficients being expressed in
terms of initial functions. By means of Sylvester theorem, Das and
Setlur extended this method to plane elasto-dynamic problems
(Das and Setlur, 1970), while the problem of free vibration of thick
circular plates was investigated by Celep (Celep, 1978). Employing
this method, some classes of exact solutions for transversely
isotropic elastic layers were obtained by Sun and Archer (Sun and
Archer, 1992). Along this line, the responses of thin-walled elastic
systems, thick plates and shells composed of anisotropic and
isotropic materials under static and dynamical actions were
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extensively analyzed. Later, this method was further developed and
becoming known as the state space approach, which is often be
employed to carry out stress analysis of elastic laminated layers
with the concept of transfer matrices.

Alternatively, Lurie developed a symbolic method in a more
direct form (Lurie, 2005), by which the a priori assumptions
regarding the stresses or displacements are excluded. With this
method, Cheng (Cheng, 1979) developed a refined theory for elastic
plates in which the governing differential equations were deduced
directly from the general solution of BoussinesqeGalerkin type. A
parallel development of Cheng’s theory was made by Barrett and
Ellis (Barrett and Ellis, 1988) to discuss the bending of an elastic
plate under a transverse load, a new thick plate theory of whichwas
put forward byWang and Shi (Wang and Shi, 1997) by virtue of the
PapkovicheNeuber solution. Additionally, some extensional in-
vestigations have been made on the formulation of plate theories,
including transversely isotropic piezoelectric plate (Xu and Wang,
2004), thermoelastic plate (Gao and Zhao, 2007), magnetoelastic
plate (Gao and Zhao, 2009) and quasicrystalline plate (Gao and
Ricoeur, 2012). The analogous development also goes to the for-
mulations of beam theories. The first generalization of Lurie’s
operational method to anisotropic beam was carried out by Lekh-
nitskii (Lekhnitskii, 1963). In that study, the elegant solutions were
constructed with the aid of the Airy’s stress function. Likewise,
some refined beam theories established on the basis of general
solutions of displacement type (Wang et al., 2008b) were con-
structed by Gao and his collaborators (Gao, 2009; Gao, 2010; Gao
and Wang, 2006a; Gao and Wang, 2006b; Gao et al., 2007).

Nevertheless, to the authors’ knowledge, attempts to generalize
the formalism to nonlocal elastic beam so as to furnish more ac-
curate solutions have not yet been made. Motivated by these ob-
servations, this paper is dedicated to explore such a general theory
for a transversely loaded nanobeam within the framework of
nonlocal elasticity theory.

2. Basic equations

The main feature of nonlocal elasticity theory is its departure
from the traditional postulate of the strictly local internal in-
teractions, but instead it states that the stress state at a reference
point x depends not only on the strain at that point, but also on
strains at all other points x

0
of the body. In this way, information

concerning about the long-range forces between atoms is incor-
porated into the theory, and consequently, the internal size is
represented in constitutive equations simply as a material param-
eter. The fundamental equations for linear, homogeneous and
isotropic nonlocal elastic solids given by Eringen (Eringen,1983) are
as follows

sijðxÞ ¼
Z
V

aðjx0 � xj; sÞs0ijðx0ÞdVðx0Þ; (1)

s0ijðx0Þ ¼ l 3kkðx0Þdij þ 2m 3ijðx0Þ; (2)

3ijðx0Þ ¼ 1
2

 
vujðx0Þ
vx0i

þ vuiðx0Þ
vx0j

!
; (3)

sij;j þ rðfi � €uiÞ ¼ 0: (4)

where sij, s0ij and 3ij are, respectively, the nonlocal stress, classical
(local) stress and strain tensors. l and m are Lamé constants, dij the
Kronecker delta, V the entire body considered. ui, r, and fi are,
respectively, the displacement vector, mass density and body force

density. The nonlocal modulus is represented by the kernel func-
tion aðjx0 � xj; sÞ, with s being defined as small scale factor. Besides,
the usual convention of summation over repeated indices i, j and k
is utilized in this section, as is the comma convention representing
differentiation with respect to the coordinates, and the superposed
dot denotes differentiation with respect to time.

The involvement of spatial integrals in constitutive relations (1)
makes the theory suffer from theoretical and numerical difficulties.
However, Eringen (Eringen, 1983) showed that it is possible to
convert this integral relation to an equivalent differential one,
namely�
1� bV2

�
sij ¼ s0ij (5)

where V2 is the Laplacian operator in R2, b ¼ (e0a)2 is the nonlocal
parameter that allows for the size effect, a is an internal charac-
teristic length (e.g. length of CeC bond, lattice spacing, granular
distance), while e0 is a constant appropriate to each material,
whose magnitude is usually identified either by matching the
dispersion curves of plane waves with those of atomic lattice dy-
namics or by calibrating it against molecular dynamic simulation
results. Generally, a conservative estimate for the small scale
parameter is suggested as e0a < 2.0 nm for a single carbon nano-
tube (Wang and Wang, 2007).

Substituting Eq. (5) into Eq. (4) results in

s0ij;j þ r
�
1� bV2

�
ðfi � €uiÞ ¼ 0 (6)

Then the equilibrium equation in terms of displacement com-
ponents can be reached by substituting Eqs. (2) and (3) into Eq. (6)

mui;jj þ ðlþ mÞuj;ji þ r
�
1� bV2

�
ðfi � €uiÞ ¼ 0: (7)

Let us consider the bending of a nonlocal elastic beam as a plane
stress problem in a fixed rectangular coordinate system (x � z),
where z is the coordinate normal to the neutral surface of the beam.
When the body force, as well as the dynamical effect, is absent, this
Navier’s equation of equilibrium (7) can be simplified as

V2ux þ 1þ n

1� n

vq

vx
¼ 0; V2uz þ 1þ n

1� n

vq

vz
¼ 0; (8)

where q ¼ vux/vx þ vuz/vz and n is Poisson’s ratio.
The general solution of Eq. (8) has been suggested in various

forms (Wang et al., 2008b), the PapkovicheNeuber solution as one
of the widely used solutions is adopted herein, namely

ux ¼ P1 �
1þ n

4
v

vx
ðP0 þ xP1 þ zP3Þ;

uz ¼ P3 �
1þ n

4
v

vz
ðP0 þ xP1 þ zP3Þ;

(9)

where the displacement functions Pi(i ¼ 0,1,3) are harmonic and
satisfy

V2Pi ¼
v2Pi
vz2

þ v2xPi ¼ 0;

 
i ¼ 0;1;3; vxh

v

vx

!
: (10)

For the bending problem, the nonlocal elastic beam is subjected
only to anti-symmetrical loads and boundary conditions, which
requires that ux be an odd function of z and uz be an even function of
z. Then in the light of Lurie’s operational method, the symbolic
solution of displacements (9) can be rewritten, in terms of the angle
of rotation j ¼ ½�vux=vz�jz¼0 as well as the deflection w of the
neutral plane, as (Gao and Wang, 2006b)
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