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a b s t r a c t

We consider the problem of determining the stability boundary and postbuckling behavior of an elastic
rod with spring supports at clamped ends. The rod is loaded by a compressive force and the constitutive
equations of the rod take into account the compressibility of the rod axis. Using the LiapunoveSchmidt
procedure local bifurcation analysis is performed. The spring stiffness is chosen to be in the neighbor-
hood of the critical one corresponding to a double eigenvalue. Due to the splitting of eigenvalues sec-
ondary bifurcations occur. The results show that the type of primary bifurcation depends on the
slenderness ratio and that there are three groups of bifurcation diagrams. Also, asymptotic expansions of
postbuckling states are constructed.

� 2014 Elsevier Masson SAS. All rights reserved.

1. Introduction

The problem of stability analysis of elastic rods supported by
elastic springs is an old one. It is well-known that such problems, in
order to be fully understood, require evaluation of buckling loads,
postbuckling behaviors and the analysis of stability of equilibrium
states. Among these problems, the ones having multiple buckling
modes associated to the same buckling load (multiple eigenvalues)
are of special interest for researchers. Such problems are complex
compared totheproblemshavinga simpleeigenvalue.However, even
more challengingare theproblemspossessingsecondarybifurcations
since they could have a very interesting postbuckling behavior that
sometimes explains a physical phenomena as mode jumping (see
Bauer et al.,1975; Schaeffer and Golubitsky,1979). In general one can
perform local or global analysis of secondary bifurcations (see
Domokos, 1994). Here we focus our attention on local analysis near a
double eigenvalue. The reason for this is that the authors share a view
of Koiter (1976) and Olhoff and Seyranian (2008) and their belief that
an understanding of buckling phenomena cannot be achieved
without proper knowledge and development of bifurcation theory.
There are plenty of papers dealingwith secondary bifurcation. One of
the most important is the paper Bauer et al. (1975) showing that the
splitting of multiple eigenvalues could lead to secondary bifurcation.

When dealing with the secondary bifurcation of plates onemust
mention the paper Schaeffer and Golubitsky (1979). It is also worth

mentioning the papers Buzano (1986) and Wu (1995) concerning
the secondary bifurcations of a thin clamped rod under axial
compression. In these papers secondary bifurcations lead to a
spatially deformed rod. Then there are a lot of papers dealing with
the secondary bifurcation of rods supported by elastic springs.
Some of them are Potier-Ferry (1983), Wu (1997, 1998a), Wu
(1998b) and Hunt and Everall (1999). Following the ideas pre-
sented in these papers the present authors find it interesting to
generalize the results of Wu (1998a). Namely, lots of papers,
analyzing local secondary bifurcation, did not take into account the
effect of compressibility. As a consequence we think that the in-
fluence of this effect on secondary bifurcation should be investi-
gated. Thus, the whole analysis is limited to the BernoullieEuler
kinematics meaning that the shear effect will not be taken into
account. We note that the postbuckling behavior of compressible
rods was the subject of many papers. Among all of them, papers of
Antman and co-workers are of great importance. Some of these
papers are Antman and Rosenfeld (1978), Antman and Pierce
(1990) and Antman and Marlow (1992). It is also worth
mentioning the following papers Greenberg (1967), Olmstead and
Mescheloff (1974), Atanackovic (1989) andMagnusson et al. (2001).

In this paper the secondary bifurcations of a compressible rod
with spring supports at clamped ends is to be analyzed. With the
compressibility effect taken into account one may expect complex
postbuckling behavior of the rod. The investigation of such complex
behavior is supposed to help engineers understand the behavior of
elastic structures. Thus the main goal of this paper is a local bifur-
cation analysis of a straight uniform clamped compressible rod with
its ends supported by spring supports of equal stiffness. By applying
linear analysis the influence of the slenderness ratio and spring
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stiffness on the lowest buckling load is investigated. The obtained
result leads to the conclusion that for some values of the slenderness
ratio and spring stiffness the eigenvalue (the lowest buckling load) is
double. However, if the spring stiffness is changed the double
eigenvalue splits into two simple eigenvalues. Thus the splitting of
eigenvalues occurs suggesting that there is a possibility of secondary
bifurcation (see Bauer et al., 1975). Using the procedure presented in
Shearer (1980) and Wu (1997) the bifurcation analysis is performed
showing that primary and secondary bifurcations occur. The type of
primary bifurcations (super or subcritical) depends on the slender-
ness ratio. Further analysis reveals that there are three groups of
bifurcation diagrams depending on the slenderness ratio. We note
that for an inextensible rod (see Wu, 1998a) only one group of
bifurcation diagrams exists. Also, asymptotic expansions of post-
buckling states are constructed. At the end of this section we
mention that one may find it interesting to investigate the influence
of the shear effect. A short analysis of this problem reviles that for
the Timoshenko beam the type of primary and secondary bifurcation
changes depending on the shear stiffness. However, the postbuck-
ling behavior is different from the one corresponding to a
compressible rod.

2. Governing equations

Consider a naturally straight uniform rod BC of length L. The
cross-sectional area of the rod is A. The rod is clamped with the
ends supported by spring supports of stiffness c (see Fig. 1). We
assume that the rod is compressible. In order to derive governing
equations we introduce a rectangular Cartesian coordinate system
xBy whose axis x coincides with the rod axis in the undeformed
state while y axis is perpendicular to x axis (see Fig. 1). The arc
length of the rod axis in the undeformed state, measured from the
left end B, is denoted by S. The rod is loaded by a compressed force
of constant intensity P acting along the x axis (see Fig. 1).

The governing equations describing the behavior of a compress-
ible linearly elastic rod are very well known in the literature (see
Atanackovic, 1997; Simitses and Hodges, 2006; Glavardanov et al.,
2009). For the rod presented in Fig. 1 these equations are of the
form (see Atanackovic, 1997, page 31, Equation 2.1.28)

dV
dS

¼ 0;
dM
dS

¼ �ðP sin qþV cos qÞ
�
1þ�P cos qþV sin q

EA

�
;

dy
dS

¼
�
1þ�P cos qþV sin q

EA

�
sin q;

dq
dS

¼ M
EI
;

(1)

where V is the component of the contact force along the y axis,M is
the contact couple, q is the angle between the tangent to the rod
axis and the x axis, E is the modulus of elasticity and I is the second
moment of inertia of the cross-section. The corresponding bound-
ary conditions read

cyð0Þ ¼ Vð0Þ; �cyðLÞ ¼ VðLÞ; qð0Þ ¼ 0; qðLÞ ¼ 0: (2)

Assuming that 0 < c < N we introduce the dimensionless
quantities

t ¼ S
L
; k ¼ cL3

EI
; u ¼ ycL2

EI
; m ¼ L

ffiffiffi
A
I

r

v ¼ VL2

EI
; m ¼ ML

EI
; l ¼ PL2

EI
;

(3)

so that the system consisting of (1) and (2) becomes

v0 ¼ 0; m0 ¼ �ðl sin qþ v cos qÞ
h
1þ�l cos qþ v sin q

m2

�
;

u0 ¼ k
�
1þ�l cos qþ v sin q

m2

�
sin q; q0 ¼ m;

(4)

subject to

uð0Þ ¼ vð0Þ; �uð1Þ ¼ vð1Þ; qð0Þ ¼ 0; qð1Þ ¼ 0; (5)

where (,)
0 ¼ d/dt(,). In engineering, the parameter m is called the

slenderness ratio.
The system (4), (5) possesses the trivial solution

v0 ¼ m0 ¼ u0 ¼ q0 ¼ 0. If we introduce small perturbations
Dv,Dm,Du,Dq and express solutions to (4), (5) as v ¼ v0 þ Dv ¼ Dv,
m ¼m0 þ Dm ¼ Dm, u ¼ u0 þ Du ¼ Du, q ¼ q0 þ Dq ¼ Dqwe get the
perturbed system being the same as (4), (5) after omittingD in front
of Dv,Dm,Du,Dq. Thus the nonlinear system, suitable for bifurcation
analysis, is given by (4), (5).

3. Local bifurcation analysis

The aim of this section is to present a local bifurcation analysis
based on the nonlinear boundary value problem (4) and (5). In
particular, we will be focused on the lowest buckling load, bifur-
cation equations and primary and secondary branches.

3.1. Buckling loads and bifurcation equations

Thefirst step in local bifurcation analysis is to introduce avectorw
defined byw ¼ (w1,w2,w3,w4)T ¼ (v,m,u,q)T and two function spaces

Y ¼
�
w :w˛C1	½0;1�;R4
; w1ð0Þ ¼w3ð0Þ; w1ð1Þ ¼ �w3ð1Þ;

w4ð0Þ ¼ 0; w4ð1Þ ¼ 0

�
;

Z ¼ �z :z˛C	½0;1�;R4

;
(6)

where C1ð½0;1�;R4Þ represents the space of continuous functions
mapping [0,1] into R4 and have continuous first derivative, while
Cð½0;1�;R4Þ is the space of continuous functions mapping [0,1] into
R4: If the norms kwk2Y ¼ P4

i¼1ðsupjwij þ sup
��w0

i

��Þ2 and
kvk2Z ¼ P4

i¼1ðsupjvijÞ2 are introduced on Y and Z then they become
Banach spaces. We can now define the nonlinear operator F:
Rþ � Rþ � Y/Z

Fðl; k;wÞ ¼

8>>>>>>>>>><>>>>>>>>>>:

w0
1

w0
2 þ ðl sin w4 þw1 cos w4Þ

h
1þ�l cos w4 þw1 sin w4

m2

�
w0

3 � k
�
1þ�l cos w4 þw1 sin w4

m2

�
sin w4

w0
4 �w2

: (7)
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