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a b s t r a c t

Using a systematic procedure based on convex/concave functions and Legendre transforms, the
consistent set of the thermodynamic functions in the framework of the Green and Naghdi (GN) ther-
moelasticity without energy dissipation is addressed. Starting from the free energy of GN, the thermo-
dynamic potentials, i.e. internal energy, enthalpy and Gibbs free energy, are derived. Moreover it is
shown that four more thermodynamic potentials, named alternative, can be provided. The relations
between these functions are provided and the constitutive relations are obtained extending the general
methodology used for the classical thermoelastic behaviour.

� 2014 Elsevier Masson SAS. All rights reserved.

1. Introduction

In many engineering applications, non-isothermal elastic
problems are of great interest and have become increasingly
important. As well-known the classical theory of thermoelasticity,
see e.g. Biot (1956), implies that the heat conduction occurs at an
infinite speed so that some behaviours, such as heat wave propa-
gation phenomena, cannot be successfully captured. As a conse-
quence a large amount of papers are devoted to the analysis of
generalized theories of thermoelasticity.

The first theory of this typewas developed by Lord and Shulman
(1967) who considered anisotropic elastic theory with one relaxa-
tion time parameter into the Fourier heat conduction equation. As a
result the related heat equation turns out to be of a hyperbolic type.
Such a theory has been later extended by Dhaliwal and Sherief
(1980) to the case of anisotropic media. A further generalization
of the Lord and Shulman theory was proposed by Green and
Lindsay (1972) by considering a thermoelastic model with two
relaxation time parameters.

A new thermoelastic theory without energy dissipation has
been proposed by Green and Naghdi (1991, 1993) in which the in-
ternal rate of production of entropy is identically zero. This ther-
moelastic theory introduces the so-called thermal displacement,

which is related to the usual temperature by a differential relation,
and uses a general entropy balance as postulated in Green and
Naghdi (1977). Such a theory incorporates the approach based on
Fourier’s law (type I), a theorywhich allows for heat transmission at
finite speed and for which there is no energy dissipation (type II)
and amodel which allows finitewave propagation as well as energy
dissipation (type III). Uniqueness theorems in the case of the line-
arized version of this theory have been given by Green and Naghdi
(1993), Chandrasekharaiah (1996, 1998) and Quintanilla (2002).

Further theoretical aspects of the linear Green and Naghdi (GN)
theory of thermoelasticity without energy dissipation was studied
by Chandrasekharaiah (1996), Iesan (1998), Quintanilla and
Straughan (2000), Kalpakides and Maugin (2004).

The approach of GN has been applied to the thermomechanically
coupled problem for homogeneous and isotropic materials in
Bargmann and Steinmann (2006), for bodies with microstructure
and microtemperature in Iesan and Quintanilla (2009). Further
application of the GN theory of type II can be found in Hosseini and
Abolbashari (2012), where heat wave propagation in functionally
graded thick hollow cylinder is analysed, Chirit�a and Ciarletta
(2010a), where non-standard conditions are imposed for the
linear analysis of a prismatic cylinder made by a thermoelastic ho-
mogeneous and anisotropic material and Yu et al. (2012) for the
analysis of the thermoelastic waves propagation in orthotropic
functionally graded plate. Variational aspects of the GN theory are
treated in Bargmann and Steinmann (2006, 2008), Chirit�a and
Ciarletta (2010b) for the analysis of thermoelastic inhomogeneous
and anisotropic materials, Youssef (2011) where a uniqueness the-
orem is proved for two-temperature generalized thermoelasticity
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and a general variational formulation in a nonlocal context is pre-
sented in Marotti de Sciarra (2009c).

An account of theories of heat conduction where the tempera-
ture travels as a wave with a finite speed is reported in Straughan
(2011). The increase of engineering applications at the nano- and
micro-scale requires the development of accuracy models to pre-
dict their responses, see e.g. Barretta and Marotti de Sciarra (2013),
Barretta et al. (2013), and studies on non-classical diffusion are of
outmost importance since there is evidence that thermal motion at
the micro-scale is via a wave mechanism as opposed to by diffusion
(Straughan, 2011).

Nonlinear GN theory of type II is studied by Quintanilla and
Sivaloganathan (2012) where various analyses on GN model,
including the existence and uniqueness of quasistatic solutions and
the possibility of thermally activated instability, are considered.

A theoretical aspect for the GN theory without dissipation (type
II) that deserves further studies is the systematic and unified
definition of thermodynamic potentials and of their alternative
formulations for the analysis of the constitutive behaviour of a
thermoelastic material.

In the framework of coupled nonlinear elastic thermomechan-
ical problems, the present paper has the objective to establish a
general methodology to derive the energy functions which char-
acterize the nonlinear thermoelastic model without dissipation.
Further the relations between the thermodynamic functions and
their alternative formulations are obtained.

A consistent set of the eight thermodynamic functions has
been derived into the framework of convex analysis and conju-
gate functions. In particular it is obtained the four specific ther-
modynamic potentials, i.e. internal energy, Helmholtz free
energy, enthalpy and Gibbs free energy, and their four alternative
forms.

In the considered GN model, the thermodynamic functions
depend on three state variables where the dual set of constitutive
state variables are given by strain, stresses, temperature, entropy,
gradient of thermal displacement and entropy flux.

Using a systematic procedure based on Legendre transforms, the
thermodynamic potentials are expressed in terms of different
combinations of the abovementioned state variables obtaining a set
of eight alternative functions. A characteristic feature of the pro-
posed approach is that the derivatives of the thermodynamic po-
tentials and of their alternative forms provide different expressions
of the constitutive relations which are all equivalent each other.

We then provide the generalizations to the GN thermoelastic
framework of the classical Legendre transform relating elastic and
complementary energies.

Then a set of relations involving the thermoelastic work has
been straightforwardly specialized in an example considering a
one-dimensional loading path (isoentropic, isothermal, constant
stress and constant strain). Hence the link with the classical ther-
moelastic relations is also shown by comparing the new relations
with the classical ones reported in Lubarda (2004).

The layout of this paper is as follows. In Section 2 themain issues
concerning the GN thermoelastic theory are provided. Then eval-
uating the conjugate of the free energywith respect to one, two and
three (the complete set) state variables, the thermodynamic func-
tions and their alternative formulations are obtained. In Section 3
the Legendre transform between the thermodynamic and alter-
native functions are given by appealing to the general rules of
convex/concave functions and the constitutive relations in terms of
the thermodynamic functions and of their alternative formulations
are obtained. In Section 4 the general expressions of the thermo-
dynamic potentials for the GN nonlinearmodel are then specialized
to the linear coupled isotropic thermoelastic behaviour. In Section 5
a one-dimensional example illustrates the relations between the

thermodynamic potentials and the thermal work. The connections
with the existing expressions in literature for the classical linear
coupled thermoelasticity are also provided.

Further development of this issue will concern the thermody-
namic functions in coupled thermomechanical problems with
damage, particularly if damage is due to both mechanical and
thermal strains and if the material is exposed to elevated temper-
atures (see e.g. Stabler and Baker, 2000), and related nonlocal
problems which have to be considered to avoid localization prob-
lems (see for example Marotti de Sciarra, 2009a, 2012).

2. Energy functions

The classical thermodynamics of fluids makes use of the quan-
tities pressure, temperature, specific volume and specific entropy.
The specific quantities are defined per unit mass. Moreover, four
energy functions are defined which are the specific internal energy
U, the specific Helmholtz free energy F, the specific enthalpy H and
the specific Gibbs free energy G. The four energies are related by a
series of Legendre transformations (e.g. Callen, 1985).

In applying thermodynamics to solids, pressure and specific
volume are replaced by stress and strain tensors. In small strain
analysis if the specific quantities are defined per unit volume rather
than per unit mass, the initial density appears as a multiplicative
factor throughout the analysis so that it can be dropped. Thus the
four energy functions in thermodynamics of solids assume a
slightly different meaning from those in classical thermodynamics
(see e.g. Houlsby and Puzrin, 2006).

The starting point of thermodynamics is the hypothesis that at
any instant of a thermomechanical process, the thermodynamic
state at a given point can be completely determined by the
knowledge of a finite number of state variables. The thermody-
namic state depends only on the instantaneous value of the state
variables and not on their past history.

In this paper we analyse the Green and Naghdi (GN) thermo-
elastic framework of type II for local constitutive elastic models
using the properties of conjugate functions.

The strain tensor is denoted by 3, the dual state variable is the
stress tensor s. The scalar product between dual quantities (simple
or double index saturation operation between vectors or tensors)
has the mechanical meaning of the internal virtual work, and is
denoted by the symbol *.

The GN model introduces a scalar variable a, called the thermal
displacement, which is related to the temperature q by the relation:

aðx; tÞ ¼
Zt
0

wðx; sÞdsþ a0ðx;0Þ (1)

where x is a point pertaining to the thermoelastic body defined on a
regular bounded domain U of an Euclidean space, w ¼ q � qr rep-
resents the temperature variation from the uniform reference
temperature qr and a0 is the initial value of a at the time t ¼ 0. As a
consequence the time derivative of the thermal displacement field
is the temperature variation, i.e. _a ¼ w.

Let us now derive the complete set of the energy functions for
the considered GN model and the related constitutive relations in
the framework provided by convex/saddle functions. For simplicity,
in the sequel, the dependence on the variable x is dropped and the
thermal displacement gradient Va is denoted by g, i.e. g ¼ Va.

2.1. Conjugate of the free energy with respect to one state variable

A fundamental hypothesis in GN model is the introduction of
the thermal displacement so that the thermal displacement
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