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The problem of finite inflation of a hyperelastic toroidal membrane under uniform internal pressure is
considered in this paper. The work consists of the following two aspects of the inflation problem. Firstly,
a formulation for solving the inflation problem efficiently by directly integrating the differential equa-
tions of equilibrium without discretization is proposed. The results obtained are compared with those
obtained using a discretization method proposed earlier. Secondly, the effects of the geometric and
material parameters of the membrane and the internal pressure on the inflation and its stability are
studied. The roles of the curvature (specifically, the eigenvalues of the shape operator) of the toroidal
geometry and the membrane material parameter on the distortion of the cross-section and occurrence of
wrinkling instability are clearly brought out. Based on the Cauchy stress resultants, the limits on the
inflation to avoid wrinkling are determined. It is observed that the limit point pressure of the membrane
is inversely proportional to the geometric parameter of the torus. The proportionality constant involved
is found to vary linearly with the material parameter of the membrane, and involves two universal
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constants for the toroidal geometry.
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1. Introduction

Inflatable structures have gained considerable importance in the
recent past due to their advantages of light weight, quick and self-
deployment, and compact storage properties. These structures have
potential applications in terrestrial and space structures (Jenkins,
2001). The study of the geometric and material nonlinearities
associated with these structures is a challenging issue. The complex
interaction of the geometry of the membrane and the associated
nonlinearities can result in some non-intuitive behaviour, as
evinced in this paper.

Extensive studies have been carried out in the past by many
authors on the theory of large elastic deformations (see, for e.g.,
Adkins and Rivlin, 1952; Green and Adkins, 1970; Green and Zerna,
1992; Rivlin, 1948a,b; Mooney, 1940; Naghdi, 1972; Naghdi and
Tang, 1977). Some theoretical analysis on the finite elastic de-
formations of axisymmetric membranes (circular, cylindrical and
spherical) has been done by many authors like Corneliussen and
Shield (1961), Needleman (1977), Foster (1967), Hart-Smith and
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Crisp (1967), Jordan (1962), Sanders and Liepins (1963). Yang and
Feng (1970) and Patil and DasGupta (2013) have studied the infla-
tion problem for axisymmetric membranes using an algorithm
based on the scale invariance of the equations of equilibrium to
efficiently compute the inflated configuration. Eriksson and
Nordmark (2012) have studied the parameter dependence in
response for the membrane structures using path-following tech-
nique in the parameter space. This approach has lead Eriksson
(submitted for publication) to formulate and robustly solve the
problem of structural optimization with stiffness, strain and
instability constraints.

Finite inflation of toroidal membranes has been comparatively
less studied. The geometric complexity and variation of curvature
on top of the material non-linearity stands in the way of a general
analytical solution of the inflation problem. Approximate solutions
of the finite inflation of thick and thin-walled toroidal membranes
has been presented by Kydoniefs and Spencer (1965), Hill (1980),
Kydoniefs and Spencer (1967), Kydoniefs (1967), Feng (1976). The
problem has been studied numerically using an iterative
Lagrangian perturbation method proposed by Tamadapu and
DasGupta (2013). Algorithms proposed for other simply-con-
nected axisymmetric membrane geometries by Yang and Feng
(1970), Patil and DasGupta (2013) cannot suitably handle non-
simply connected membranes.
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During inflation, membranes with certain geometries/boundary
conditions are observed to wrinkle. Wrinkling is a structural
instability phenomenon that occurs due to the anisotropic
stretching of a membrane. Due to this anisotropic stretching,
compressive stresses may develop in the membrane leading to this
local buckling (wrinkling) phenomenon. This phenomenon can be
related to the non-convexity of the strain energy function of the
membrane (which, interestingly, can have a geometric connection).
The wrinkling instability has been addressed in a number of studies
in the past by many authors like Eftaxiopoulos and Atkinson (2005),
Haseganu and Steigmann (1994), Li and Steigmann (1995a, b),
Pipkin (1986), Roxburgh (1995), Steigmann (1990). In all these
studies, wrinkling has been idealized to be continuously distributed
over the membrane. This is a first reasonable approximation in the
absence of any bending stiffness of the membrane.

In most of the existing literature, the analysis of the inflation
problem of a hyperelastic toroidal membrane has been carried out
perturbatively under certain approximations. Finding analytical
solutions for these membrane structures is impossible due to the
nonlinearity in the material and the kinematics of deformation. The
geometry of the membrane, consisting of both positively and
negatively curved parts, further aggravates the complexity of the
problem. Recently, Tamadapu and DasGupta (2013) have proposed
a Ritz based discretization scheme using an iterative Lagrangian
perturbation for solving the inflation problem of a toroidal mem-
brane. Their method is very general, and may be applied to an
arbitrary membrane geometry. However, no direct approach
through integration of the differential equations of equilibrium,
similar to that of Yang and Feng (1970), Patil and DasGupta (2013),
is available for non-simply connected geometries like the toroidal
membrane. Further, the effects of the curvature of the toroidal
membrane and material properties on the inflation problem has
also not been explored in detail. The issue of wrinkling instability
has been addressed in the past, though scarcely. The limit point
instability is an intriguing feature of nonlinear hyperelastic mem-
branes (See, e.g., Goriely et al., 2006; Dreyer et al., 1982; Tamadapu
et al., 2013). When a membrane passes through the limit point
during inflation, it undergoes sudden and rapid stretching (with
the possibility of bursting) accompanied with a drop in the gas
pressure. The membrane response to pressurization is qualitatively
different on the either sides of the limit point. Therefore, it is
important to estimate a priori the pressure at which such a tran-
sition takes place.

Based on the above observations, in this paper, we reconsider the
axisymmetric inflation problem of a toroidal membrane of circular
cross-section addressed by Tamadapu and DasGupta (2013). How-
ever, in contrast to their method (which involves discretization), we
reformulate the problem with a different set of suitable field vari-
ables and solve it by direct integration of the differential equations of
equilibrium of the membrane. Such an approach, though specific to
the toroidal geometry, is expected to be more efficient and also
applicable to contact and indentation problems involving inflated
toroidal membranes. The possibility of above solution is an indica-
tion of the solvability of other complicated equations arising from
the analysis of axisymmetric membranes. We consider a general
axisymmetric deformation field of the material points in the labo-
ratory frame. The membrane material is assumed to be a trans-
versely isotropic Mooney—Rivlin solid. We obtain a two-point
boundary value problem for the membrane which is converted to an
initial value problem by constructing an optimization function. The
optimization problem is then solved using the Nelder—Meads
search technique to find the equilibrium configurations of the
membrane. The obtained results are compared with the solutions
obtained by the modified Ritz method of Tamadapu and DasGupta
(2013). Based on the approach proposed in this paper, we then

study and analyse the inflation mechanics based on the curvature of
the membrane and the material parameter. We identify a qualitative
similarity in the variation of the stretch field with the eigenvalues of
the shape operator of the toroidal geometry. Based on this corre-
spondence, we discuss the distortion of the cross-section of the
membrane and occurrence of wrinkling. We also study the occur-
rence of the limit point instability of the membrane. It is found that
limit point pressure of the membrane is inversely proportional to
the geometric parameter (which decides the curvature). The pro-
portionality constant involved, surprisingly, varies linearly with the
material parameter involving two universal constants. This func-
tional relation is an invariant property of the toroidal geometry for
the Mooney—Rivlin class of hyperelastic materials. The universal
constants are specific to the toroidal geometry, and do not depend
on any other parameter of the problem. Some interesting insights
have been developed through these results.

The paper is organized as follows. In Section 2, we discuss the
geometry of deformation of the toroidal membrane. The governing
equations of equilibrium are derived using the variational formu-
lation in Section 3. The solution procedure is presented in Section 4,
and the numerical results are analysed in Section 5. The paper is
concluded with Section 6.

2. Geometry of membrane deformation

Consider a hyperelastic toroidal membrane of circular cross-
section as shown Fig. 1 with undeformed ring radius R, sectional
radius 7 and thickness h. The thickness of the membrane is assumed
to be small when compared to the characteristic dimensions of the
torus. Let # (meridional) and ¢ (circumferential) be the coordinates
on the surface of the torus, as shown in the figure. Let £ is the co-
ordinate along the local normal with £ = 0 representing the mid-
surface of the membrane. The line element on the surface of the
undeformed torus can be written as

ds? = 72d6? + (R +F cos 0)2d¢? + d£?

Therefore, the components of the undeformed metric tensor are
given by

P 0 0\ 1
g = |0 R+fcost)* 0, &= (g)
0 0 1

We assume that Y2 and Y' — Y? remain, respectively, the axis and
the plane of symmetry during the inflation of the membrane. Let
the material point B (deflected from Bg) on the mid-surface of the
membrane be represented by (p,7) in the laboratory frame, as
shown in Fig. 1. The position vector of a point on the deformed torus
is given by

p' =y +Ekn’. (1)
Here,
y' = b(O)cos ¢, y* = p(f)sing, y> = q(h), (2)

and n' is the unit outward normal vector to the deformed mem-
brane surface given by

i 1y i . .
n' = jé’le“ﬂeljkyfay{‘ﬂ, (summation convention) (3)

where £ = % /\/G and &ijk = ejjk are, respectively, the completely
antisymmetric contravariant (two dimensional) and covariant
(three dimensional) Levi—Civita tensors. Here,
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