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a b s t r a c t

In this paper, the non-Fourier heat conduction theory is used to investigate the facture
behavior of a hollow cylinder containing an embedded or edge circumferential crack under
convective heat transfer boundary conditions. By neglecting the thermo-elastic coupling
and inertial effects, the one-dimensional temperature field and the axial thermal stress
for an un-cracked hollow cylinder are obtained in the Laplace domain. Then a mode I crack
problem is formulated in the cylindrical system by using the superposition method. Inte-
gral transform technique is employed to reduce this mixed boundary value problem to a
singular integral equation, which is solved numerically with the Gauss–Jacobi quadrature
formulas. Finally, the effects of phase lag of heat flux, Biot’s number, and crack geometry on
the transient temperature field, axial stress, and stress intensity factors are analyzed. It is
found that the C–V heat conduction model gives more conservative results than the Fourier
model for the structure safe design against fracture under thermal loading.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The well-known Fourier heat conduction theory is an early empirical law proposed by Fourier in 1807 based on exper-
iments and investigations, which holds for many media in the usual temperature gradient range and presents an infinite
wave propagation speed [1]. When it comes to applications undergoing large temperature gradient, the assumption that
thermal disturbance will be felt instantaneously at distances infinitely far from its source becomes unacceptable. To circum-
vent this deficiency of Fourier law, Cattaneo [2] and Vernotte [3] modified the classical Fourier model by introducing a new
material property called phase lag of heat flux or thermal relaxation time. The modified non-Fourier model, known as the C–
V heat conduction model or the hyperbolic heat conduction model, results in a hyperbolic heat conduction equation and a
finite thermal wave propagation speed.

Mitra et al. [4] gave the experimental evidence of the wave nature of heat propagation in the processed meat and dem-
onstrated that the C–V heat conduction model was accurate to present the heat conduction process in biological materials.
Kaminski [5] tested the values of phase lag of heat flux for some selected materials with nonhomogeneous inner structures,
which were in the range of 101–102 s. The one-dimensional transient hyperbolic heat conduction in a functionally graded
hollow cylinder was investigated by Babaei and Chen [6] using the Laplace transform technique. Torabi and Saedodin [7]
studied the two-dimensional hyperbolic heat conduction problem in a finitely long solid cylinder with normal heat flux
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Nomenclature

a inner radius of the crack
Aj unknown coefficients
b outer radius of the crack
bij variables defined in Appendix B
Ci unknown coefficients
Cij variables defined in Appendix A
Cv specific heat capacity
d thermal diffusivity
Di variables defined in Appendix A
E Young’s modulus
E( ) complete elliptic integral of the second kind
f( ) a bounded function in the fundamental solution of the normalized SIE
F( ) unknown function equals to /( )
G( ) a bounded function in the fundamental solution of SIE
hi convective heat transfer coefficient of the inner surface
ho convective heat transfer coefficient of the outer surface
H( ) Heaviside function
In( ) the nth-order modified Bessel functions of the first kind
k thermal conductivity
ka stress intensity factor at the inner crack tip
kb stress intensity factor at the outer crack tip
K( ) complete elliptic integral of the first kind
Kn( ) the nth-order modified Bessel functions of the second kind
L( ) a function defined in Eq. (34)
m( ) a function defined in Eq. (35)
M( ) a function defined in Eq. (33)
p axial stress determined for the un-cracked cylinder
~q heat flux vector
r radial coordinate
R heat source
Ri inner radius of the hollow cylinder
Ro outer radius of the hollow cylinder
s Laplace variable
t time
T temperature
Ti temperature of the surrounding internal environment of the cylinder
To temperature of the surrounding external environment of the cylinder
T1 initial temperature
ur radial displacement
uz axial displacement
x integral variable
Yi variables defined in Appendix B
z axial coordinate

Greek letters
a coefficient of linear thermal expansion
b a power law index in the fundamental solution of SIE
d( ) Dirac delta function
dT temperature change
~r spatial gradient operator
D,Dj determinants defined in Appendix B
g integral variable
/( ) dislocation density function
W( ) Love potential function
c a power law index in the fundamental solution of SIE
n integral variable
k variable defined in Eq. (10)
l Poisson’s ratio
q normalized r0
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