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a b s t r a c t

In this work the third-order shear deformation theory by Reddy is applied and modified to analyze
delaminated orthotropic composite plates. The delaminated plate portion is captured by Reddy’s tradi-
tional theory, while a novel double-plate system is developed for the undelaminated part. It is shown
that in the uncracked part four conditions are required to satisfy in symmetrically delaminated plates.
The conditions involve the imposition of traction-free boundaries and the interface constraints. These
four conditions enable the reduction of the parameters from nine to five in the displacement field. The
governing equations show significant coupling among the stress resultants of the uncracked portion, that
has to be considered in the continuity conditions between the delaminated and undelaminated parts. To
demonstrate the application of the present model a simply-supported delaminated plate subjected to a
concentrated force is analyzed. The distribution of the mode-II and mode-III energy release rates and
their ratio are calculated using the 3-dimensional J-integral. The finite element model of the plate is also
created using brick-type elements. The comparison of the analytical and finite element results shows
very good agreement. It is shown that the deformations around the delamination front can be captured
by the third-order plate theory with high accuracy.

� 2013 Elsevier Masson SAS. All rights reserved.

1. Introduction

Laminated composite materials are used in many type of engi-
neering structures (e.g. cars, airplanes, medical prosthetic devices,
bridges, sports equipments, etc.). There is a large number of
different damage modes of composite structures depending on the
function, shape and loading conditions involved (Phillips, 1989;
Tsai, 1992). In laminated composite structures the delamination
or interlaminar fracture can take place as the result of quasi-static
impact and the formation of cracks and notches during the appli-
cation (Anderson, 2005). Therefore, the determination of the
resistance against the delamination between the layers is a key
step, as well. This property is characterized by the energy release
rate (ERR) and its critical value (CERR) can be considered as the
limit value in the course of proportionating composite structures.
In accordance with linear elastic fracture mechanics (LEFM) there
are three basic modes including mode-I, mode-II and mode-III
fractures (Anderson, 2005). The interlaminar fracture toughness
under mode-I (Sorensen, 2007; Sorensen et al., 2007; Jumel et al.,

2011; Kim et al., 2011; Peng et al., 2011), mode-II (Arrese et al.,
2010; Argüelles et al., 2011), mixed-mode I/II (Reeder and Crews,
1990; Bennati et al., 2009; Luo and Tong, 2009; Bennati et al.,
2013a, b) is e in general e determined by cracked beam speci-
mens. These samples have already been discussed in previous pa-
pers (Brunner and Flüeler, 2005; Brunner et al., 2008), therefore
here we do not go into details in this respect. Considering the
mode-III (Rizov et al., 2006; Szekrényes, 2009a; de Moura et al.,
2009; de Morais and Pereira, 2009; de Morais et al., 2011; Pereira
et al., 2011; Browning et al., 2010, 2011) and mixed-mode I/III
(Pereira and deMorais, 2009; Szekrényes, 2009b), II/III (Szekrényes,
2007; de Morais and Pereira, 2008; Kondo et al., 2010, 2011;
Nikbakht et al., 2010; Suemasu et al., 2010; Szekrényes, 2012a;
Mladensky and Rizov, 2013) and I/II/III (Szekrényes, 2011; Davidson
and Sediles, 2011) extensive reviews can be found in recent papers
on the state-of-art situation of the available test methods for
composite materials.

The present paper focuses essentially on the mixed-mode II/III
interlaminar fracture in laminated composite plates. In the last few
years several plate bending specimens were developed for the
investigation of the mode-III (de Morais and Pereira, 2009; de
Morais et al., 2011), mixed-mode I/III (Pereira and de Morais,
2009) and II/III (de Morais and Pereira, 2008) fractures in
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composites. In contrast with mode-I, mode-II and mixed-mode I/II
tests, where simple beam samples are used, the main aspect of the
former test methods is that plate shape specimens are used. This
fact involves several difficulties compared to mode-I and mode-II
tests. Analytical solutions are not yet available for plate bending
tests, and so at present the finite element analysis is the only data
reduction method for these tests. To calculate the ERR in numerical
models there are several possibilities (Sankar and Sonik, 1995;
Davidson et al., 2000; Park and Sankar, 2002; Bruno et al., 2005;
Pereira and de Morais, 2009; Pereira et al., 2011), however each
involves some difficulties. The most widely used method is the
virtual crack closure technique (VCCT) (e.g.: Marat-Mendes and
Freitas, 2010; Davidson and Sediles, 2011). This method requires a
refined mesh in the vicinity of the delamination front and calcu-
lates the ERRs using the nodal forces and displacements. For a large
model the refined mesh could result in very high element number.
Without any doubt the method is very effective, however it is not
yet implemented in most of the FE codes.

This paper addresses the development of an analytical solution
to delaminated orthotropic composite plates based on Reddy’s
third-order theory (Reddy, 2004). The primary parameters of
Reddy’s theory are the inplane and transverse displacements and
the rotations of the midplane normal. It was shown later that the
performance of Reddy’s theory can be improved by choosing the
midplane shear strains instead of the rotations to be the primary
parameters (Ren and Hinton, 1986). It was shown later by devel-
oping a plate finite element that the latter modification leads to
accurate results with coarser mesh and less computation cost
(Kulkarni and Kapuria, 2007). In some previous and current papers
the application of the classical laminated plate theory (CLPT)
(Szekrényes, 2012b, 2013b,a), first-order (FSDT) (Szekrényes,
2013a), second-order (SSDT) (Szekrényes, 2013c) and general
third-order (TSDT) (Szekrényes, 2013d) shear deformation theories
were applied to delaminated orthotropic plates under mixed-mode
II/III condition. The J-integral (Rice, 1968; Cherepanov, 1997) for
delaminated plates subjected to bending was derived and sepa-
rated into mode-II and mode-III components. The distribution of
the mode-II and mode-III ERRs as well as the mode ratio were
determined along the delamination front of a simply-supported
delaminated plate. The results were compared to those by a finite
element model including the VCCT method and it was shown that
plate analysis can provide reasonable accuracy. However, further
improvement is possible by utilizing and modifying Reddy’s third-

order shear deformation theory, which is the main idea of this
paper. It is shown that the complex deformations near the
delamination front require the application of higher (e.g. third-)
order theories in order to reach the sufficient accuracy from the
fracture mechanical point of view.

Although in this paper we consider only symmetrically
delaminated plates with a single crack, it is possible to extend the
model to plates with several asymmetric interfacial cracks. The
literature presents the solution of similar problems (including
multiple delaminated plates) using the layerwise stress approach
including plates subjected to uniaxial extension (Saeedi et al.,
2012a, b), cylindrical bending (Saeedi et al., 2013a) and invariant
load (Saeedi et al., 2013b). The latter works present very accurate
results for the stress field compared to finite element calculations.
In Reddy’s theory an assumed displacement field is utilized, while
in the layerwise approach there are no ad hoc assumptions. In the
former it is not possible to predict the interlaminar normal stress,
while in the latter it is. In spite of that it will be shown at the end of
this paper that Reddy’s theory gives a very accurate prediction for
the distribution of ERRs along the crack front.

2. Reddy’s third-order shear deformation theory

The third-order shear deformation theory by Reddy is applied
to capture the deformation of the delaminated part of layered
composite plates under mixed-mode II/III loading. The plate is
shown by Fig. 1 consisting of the delaminated and undelaminated
(or uncracked) portions. Reddy’s third-order plate theory assumes
third-order functions in terms of z (local through-thickness coor-
dinate) for the in-plane displacement components of elastic plates.
The solution satisfies the traction-free conditions at the top and
bottom boundary surfaces of the plate (Reddy, 2004) by elimi-
nating the parameter in the quadratic term, moreover the cubic
term is related to the parameter of linear term and the plate
deflection:

uðx; y; zÞa ¼ �u0ðx; yÞ þ qxðx; yÞ$z� 4z3
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Fig. 1. Cross sections and deformations of the top and bottom plate elements of a delaminated plate in the y-z (a) and x-z (b) planes.
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