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a b s t r a c t

The results of functionally graded material (FGM) plate with mounted magnetostrictive layer are
investigated in thermal vibration and transient response by using the generalized differential quadrature
(GDQ) method. The modified shear correction coefficient can be obtained based on the total strain en-
ergy equivalence principle. The computational real value solutions of Terfenol-D FGM plate with four
edges in simply supported boundary conditions are obtained for the center displacement. Some para-
metric effects on the Terfenol-D FGM plates are analyzed, there are: shear correction coefficient values,
thickness of mounted magnetostrictive layer, control gain values, temperature of environment and po-
wer law index of FGM. The effect of different mechanical boundary conditions on the results of numerical
GDQ method is also investigated.

� 2013 Elsevier Masson SAS. All rights reserved.

1. Introduction

The functionally gradedmaterial (FGM) can be used as a thermal
barrier in the application field of aircraft, space vehicles, reactor
vessels and engineering. There are some computational methods in
analyzing laminated composite plates and structures made up of
FGM. In 2013, Phan-Dao et al. (2013) presented an edge-based
smoothed finite element method (ES-FEM) to obtain the well so-
lutions of free vibration and buckling for laminated composite
plates. In 2013, Valizadeh et al. (2013) introduced nonuniform
rational B-spline (NURBS) based iso-geometric finite element
method (FEM) to obtain the static and dynamic numerical results of
FGM plates. In 2012, Thai et al. (2012) used NURBS based iso-
geometric approach to present the static, free vibration, and
buckling numerical results of laminated composite plates. In 2012,
Natarajan et al. (2012) presented the numerical solutions of size
dependent linear free flexural vibration of NURBS based iso-
geometric FEM for FGM nanoplates. In 2011, Baiz et al. (2011)
used the quadrilateral element with smoothed curvatures (SFEM)
and the extended finite element method (XFEM) to simulate the
linear buckling isotropic cracked plates. In 2011, Ootao et al. (2011)
used piezoelectric and magnetostrictive materials as the FGM strip
to calculate the transient thermal stress. Terfenol-D (Tb0.3D0.7Fe1.9)
made in USA is one of commercial magnetostrictive materials in the
world. In 2010, Arunanidhi and Singaperumal (2010) presented the

Terfenol-D rod material used in design of magnetostrictive actu-
ator. In 2010, Valadkhan et al. (2010) presented a load-dependent
hysteresis modeling technique at different loads for high band-
width magnetostrictive actuators. In 2009, Jia et al. (2009) pre-
sented the Terfenol-D rodmaterial used in the application of digital
PID control system of magnetostrictive actuator. In 2008, Olabi and
Grunwald (2008) showed the Young’s modulus of Terfenol-D ma-
terial varies almost linearly with the external magnetic field. In
2006, Chi and Chung (2006) presented the mechanical behavior of
FGM plate under transverse load. In 2004, Huang and Shen (2004)
investigated the nonlinear dynamic vibration response of four
edges simply supported FGM plates in thermal environments.

The author has some generalized differential quadrature (GDQ)
experiences in the study of magnetostrictive Terfenol-D material
plate. In 2012, Hong (Hong, 2012) presented the thermal vibration
of magnetostrictive FGM plate under rapid heating on its lower
surface. In 2010, Hong (Hong, 2010) presented the transient re-
sponses of magnetostrictive plates. In this GDQ study of Terfenol-D
FGM plate subjected to thermal loading in sinusoidal functions of
time, displacement and temperature with four sides in simply
supported boundary conditions, center displacements were ob-
tained under uncontrolled/controlled gain. Some parametric effects
on the Terfenol-D FGM plate were analyzed, there are: shear
correction coefficient values, thickness of mounted magnetostric-
tive layer, control gain values, temperature of environment and
power law index of FGM. The effects of different mechanical
boundary condition: four sides clamp on the results of numerical
GDQ method are also investigated.
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2. Formulation

2.1. Functionally graded material properties

The material properties of power-law function two-material
FGM plate are continuous change across its thickness. It is reason-
able to consider theYoung’smodulus of FGMplate Efgm as the typical
strong property (great value in GPa unit) for all the material prop-
erties, and the others material properties: nfgm, rfgm, afgm, kfgm and
Cvfgm of FGM plate are assumed in the average form for the simply
direct stiffness integration as introduced byChi and Chung (2006) as
follows, although for the numerical analysis of an investigation on
more general form material properties case is feasible.

Efgm ¼ ðE2 � E1Þ
�
zþ h=2

h

�Rn

þ E1: (1a)

nfgm ¼ ðn2 þ n1Þ=2; (1b)

rfgm ¼ ðr2 þ r1Þ=2; (1c)

afgm ¼ ða2 þ a1Þ=2; (1d)

kfgm ¼ ðk2 þ k1Þ=2; (1e)

Cvfgm ¼ ðCv2 þ Cv1Þ=2: (1f)

where z is the axis coordinate in the thickness direction, h is the
thickness of FGM plate, Rn is the power law index. E1 and E2 are the
Young’s modulus, n1 and n2 are the Poisson’s ratios, r1 and r2 are the
densities. a1 and a2 are the thermal expansion coefficients, k1 and
k2 are the thermal conductivities, Cv1 and Cv2 are the specific heats
of the FGM constituent material 1 and 2, respectively. E1, E2 terms
and other material properties can be expressed corresponding to
term individual property Pi equation consists with the temperature
coefficients and the temperature of environment T by Reddy and
Chin in 1998 (Reddy and Chin, 1998).

2.2. Displacements

The displacement components: u v and w are assumed in the
well-know first-order shear deformation theory (FSDT) model as
follows:

u ¼ u0ðx; y; tÞ þ zjxðx; y; tÞ; (2a)

v ¼ v0ðx; y; tÞ þ zjyðx; y; tÞ; (2b)

w ¼ wðx; y; tÞ: (2c)

where u0, v0 andw are displacements of themiddle-plane in the x, y
and z axes direction of plate, respectively, jx and jy are the shear
rotations, t is time.

2.3. GDQ method review

The GDQ implementationwas presented by Shu and Richards in
1990. The GDQ method approximates the derivative of functions, it
is restated: the derivative of a smooth function at a discrete point
can be discretized by an approximated weighting linear sum of the
function values at all the discrete points in the derivative direction
by Shu and Du in 1997 (Shu and Du, 1997).

2.4. Thermo-elastic and magnetostrictive stress-strain relations

Usually the magnetostrictive FGM plate as shown in Fig. 1 is
used in the ultimate high thermal environment, the temperature
difference DT ¼ T0(x,y,t) þ z/h*T1(x,y,t) between the magnetostric-
tive FGM plate and curing area is considered, inwhich h* is the total
thickness of magnetostrictive layer and FGM plate, T0(x,y,t) is the
temperature before thermal loading, T1(x,y,t) is the temperature
after thermal loading on the FGM plate. The stresses in the kth layer
of the magnetostrictive FGM plate under the purely thermal tem-
perature difference DT effect are given in the stress-strain equations
by Lee and Reddy in 2005 (Lee and Reddy, 2005) as follows.8<
:
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where sx and sy are the normal stresses. sxy, syz and sxz are the
shear stresses. ax and ay are the coefficients of thermal expansion,
axy is the coefficient of thermal shear. Qij is the reduced stiffness of
magnetostrictive FGM plate. εx, εy and εxy are in-plane strains. εyz
and εxz are transverse shear strains. ~eij is the transformed magne-
tostrictive coupling modulus. ~Hz is the magnetic field intensity.

The simple forms of Qij are used for the FGM in 2007 by Shen
(2007) as follows.

Q11 ¼ Q22 ¼ Efgm
1� n2fgm

; (4a)

Q12 ¼ nfgmEfgm
1� n2fgm

; (4b)

Q44 ¼ Q55 ¼ Q66 ¼ Efgm

2
�
1þ nfgm

	 ; (4c)

Q16 ¼ Q26 ¼ Q45 ¼ 0: (4d)

The simple forms of Qij for the magnetostrictive layer are used
as follows.

Q11 ¼ Q22 ¼ E11; (4e)

Q44 ¼ Q55 ¼ Q66 ¼ E11=2; (4f)

Fig. 1. Two-material FGM plate with magnetostrictive layer.
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