Coordination Chemistry Reviews 365 (2018) 75-102

Contents lists available at ScienceDirect

Coordination Chemistry Reviews

journal homepage: www.elsevier.com/locate/ccr

Review

Rationally designed mimics of antioxidant manganoenzymes: Role of structural features in the quest for catalysts with catalase and superoxide dismutase activity

Sandra Signorella*, Claudia Palopoli, Gabriela Ledesma

IQUIR (Instituto de Química Rosario), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK Rosario, Argentina

A R T I C L E I N F O

Article history: Received 2 January 2018 Accepted 5 March 2018 Available online 28 March 2018

ABSTRACT

Manganese catalases (MnCAT) and superoxide dismutases (MnSOD) deplete hydrogen peroxide and superoxide in cells through a ping-pong mechanism involving cyclic oxidation and reduction of the metal cofactor. In a variety of pathological situations, the generation of reactive oxygen species overwhelms the capacity of endogenous scavengers and tissues become vulnerable to damage. Due to the limited success of the use of exogenous SOD and CAT as therapeutic agents to reduce oxidative stress damage,

Abbreviations: Adpa, bis(2-pyridylmethyl)amino-2-propionic acid; [15]aneN₅, 1,4,7,10,13-pentaazacyclopentadecane; baba, bis(N-allylbenzimidazol-2-ylmethyl)aniline; Bbzimpy, 2,6-bis(1-butyl-1H-benzo[d]imidazol-2-yl)pyridine; BIG, N,N-bis[(1-methyl-2-imidazolyl)methyl]glycinate; Bimtacn, 1,4-bis(benzimidazol-2-ylmethyl)-1,4,7-tria zacyclononane; BimindH, 1,3-bis(2'-benzimidazolylimino)isoindoline; BMPG, N,N-bis[(6-methyl-2-pyridyl)methyl]glycinate; BSA, bovine serum albumin; 2-(CH₂)₂OHpy, 2hydroxyethylpyridine; 2-CH₂OHpy, 2-hydroxymethylpyridine; CDL, 6^A-deoxy-6^A[(S-cysteamidobenzoyl(3,4-diamino)-*N*,*N*-bis(salicylidene))]-β-cyclodextrin; CM-PVIm, car boxymethylpoly(1-vinylimidazole); Cy[15]aneN₅, 2,3,8,9-bis-cyclohexano-1,4,7,10,13-pentaazacyclopentadecane; CySalen, N.V-bis(salicylidene)-1,2-diaminocyclohexane; CySalenSO₃, N,N'-bis(5-sulfonatosalicylidene)-(R,R)-1,2-diaminocyclohexane; Csalophen, N,N'-bis(salicylidene)-3,4-diaminobenzoic acid; Etobb, 1,3-bis(1-ethylbenzimidazol-2-yl)-2-oxopropane; EUK-108, [Mn(III)salen(OAc)]; EUK-113, [Mn(III)(3-OMe-salen)(OAc)]; EUK-172, [Mn(III)(salophen)(OAc)]; EUK-207, Mn(III) complex of a cyclic salencrown ether; Hbpg, bis-2-picolylglycylamine; H₂dapsox, 2,6-diacetylpyridinebis(semioxamazide); H₂Daphp, 2,6-bis((2-(pyridin-2-yl)hydrazono)ethyl)pyridine; H₂Dcphp, N², N^{r6}-di(pyridin-2-yl)pyridine-2,6-dicarbohydrazide; HEPES, 4-(2-hydroxyethyl)piperazine-1-ethanesulfonic acid; H₃L6, 1-[N-(2-pyridylmethyl),N-(2-hydroxybenzyl)amino]-3-[N-(2-hydroxybenzyl),N-(4-methylbenzyl)amino]propan-2-ol; HL12, 2-{[[di(2-pyridyl)methyl](methyl)amino]methyl}phenol; HL13, Bis(pyrazol-1-yl)acetic acid; HPBMPA, N-propanoate-N,N-bis-(2-pyridylmethyl)amine; HPCINOL, 1-[bis(pyridin-2-ylmethyl)amino]-3-chloropropan-2-ol; H₂pda, 2-picolyldiglycylamine; Hptp1, N-(2-hydroxy-5-methylbenzyl)-N,N',N'-tris(2-pyridinylmethyl)-1,2-ethanediamine; H2qtp1, N-(2,5-dihydroxybenzyl)-N,N',N'-tris(2-pyridinylmethyl)-1,2-ethanediamine; H2pyr2en, 1,2-bis(pyridoxylidenamino)ethane; H2pyr2pn, 1,3-bis(pyridoxylidenamino)propane; HSA, human serum albumin; HSJ-0017, manganese(III) 5,10,15,20-tetrakis [3-(2-(2-methoxy)-ethoxy)ethoxy)phenyl porphyrin chloride; HSM, hollow silica microspheres; HSX-salophOMe, Hangman salophen xanthene ligand; HSX, 'Bu-Cysalen, Hangman salen xanthene ligand; Imtacn, 1-(benzimidazol-2-ylmethyl)-1,4,7-triazacyclononane; IndH, 1,3-bis(2'-pyridylimino)isoindoline; IPG, N-[(1-methyl-2-imidazolyl) methyl]-N-(2-pyridylmethyl)glycinate; L1, [N-(3,5-di-tert-butyl-4-hydroxybenzyl)-N,N-di(2-pyridylmethyl)]amine; L2H, 2-(benzyl(2-(bis(pyridin-2-ylmethyl)amino)ethyl) amino)acetic acid; L3, N,N'-dimethyl-N,N'-bis(2-pyridylmethyl)ethane-1,2-diamine; L4H, N-(2-hydroxybenzyl)-N,N'-bis[2-(N-methylimidazolyl)methyl]ethane-1,2-diamine; L5, N-methyl-N,N/,N'-tris(2-pyridylmethyl)ethane-1,2-diamine; L7, pyridine pentaazamacrocyclic ligand with acid/base auxiliary; L8–10, Me₂-pyane functionalized with alkyl ether chains: C1₂H₂₅ (L8), C₁₆H₃₃ (L9), C₂₂H₄₅ (L10); L11, 4,10-dimethyl-1,4,7,10-tetraazacyclododecane-1,7-diacetate; M40401, marganese(II)dichlorido[2S,21S-dimethyl-(4R,9R,14R,19R)-3,10,13,20,26-pentaazattracyclo[20.3.1.0^{4.9}0^{14,19}]hexacosa-1(26),22(23),24-triene}; M40403, marganese(II)dichlorido[(4R,9R,14R,19R)-3,10,13,20,26-pentaazattracyclo[20.3.1.0^{4.9}0^{14,19}]hexacosa-1(26),22(23),24-triene}; M40403, marganese(II)dichlorido[(4R,9R,14R,19R)-3,10,13,20,26-pentaazattracyclo[20.3.1.0^{4.9})hexacosa-1(26),22(23),24-triene}; M40403, marganese(II)dichlorido[(4R,9R,14R,19R)-3,10,13,20,26-pentaazattracyclo[20.3.1.0^{4.9})hexacosa-1(26),22(23),24-triene}; M40403, marganese(II)dichlorido[(4R,9R,14R,19R)-3,10,13,20,26-pentaazattracyclo[20.3.1.0^{4.9})hexacosa-1(26),22(23),24-triene}; M40403, marganese(II)dichlorido[(4R,9R,14R,19R)-3,10,13,20,26-pentaazattracyclo[20.3.1.0^{4.9})hexacosa-1(26),24-triene}; M40403, marganese(II)dichlorido[(4R,9R,14R,19R)-3,10,13,20,26-pentaazattracyclo[20.3.1.0^{4.9})hexacosa-1(20.3.1.0^{4.9})hexacosa-1(20.3.1.0^{4.9})hexacosa-1(20.3.1.0^{4.9})h taazatetracyclo[20.3.1.0^{4.9}0^{14.19}]hexacosa-1(26),-22(23),24-triene]; M40404, manganese(II)dichlorido{2*R*,21*R*-dimethyl-(4*R*,9*R*,14*R*,19*R*)-3,10,13,20,26-pentaazatetracyclo[2 0.3.1.0^{4.9}0^{14.19}]hexacosa-1(26),22(23),24-triene}; 4'MeIndH, 1,3-bis(4'-methyl-2'-pyridylimino)isoindoline; Me-PhimpH, 2-(1-(2-phenyl-2-(pyridine-2-yl)hydrazono)ethyl) phenol; Me₂EBC, 4,11-dimethyl-1,4,8,11-tetraazabicyclo[6.6.2]hexadecane; Me₂-Pyane, Me₂[15]pyridinaneN₅, trans-2,13-dimethyl-3,6,9,12,18-pentaazabicyclo [12.3.1]octa deca-1(18),14,16-triene; Me₂-Pyene, 2,13-dimethyl-3,6,9,12,18-pentaazabicyclo[12.3.1]-octadeca-1(18),2,12,14,16-pentaene; MPBMPA, methyl 3-[bis(2-pyridylmethyl)ami no]propanoate; MnPD, 1,3-di[5-(N-methylene-pyridinium-4-yl)-10,15,20-triphenylporphynato manganese(III)]; M4PyP₃P, 5-(N-methylpyridinium-4-yl)-10,15,20-triphenyl porphyrin; N4py, N,N-bis(2-pyridylmethyl)-N-bis(2-pyridyl)methylamine; naphtophen, 1,2-bis((2-hydroxynaphthalen-1-yl)methyleneamino)benzene; naphton, 1,3-bis((2hydroxynaphthalen-1-yl)methyleneamino)propane; NBT, nitrobluetetrazolium; N-PhimpH, 2-((2-phenyl-2-(pyridin-2-yl)hydrazono)methyl)napthalen-1-ol; P¹, [Mn(III)meso-tri(N-methylpyridinium-4-yl)mono(4-carboxybenzyl)porphyrin]; P², [Mn(III)-meso-tri(N-methylpyridinium-4-yl)mono(N-4-carboxybenzyl-4-pyridyl)porphyrin]; PBMPA, 3-[bis(2-pyridylmethyl)amino]propanoate; PEG, polyethyleneglycol; PhlH, 4-(2-salicylamino-ethyl)-imidazole; PhimpH, 2-((2-phenyl-2-(pyridin-2-yl)hydazono)m ethyl)phenol; Pi, inorganic phosphate; PI-, 2-{[(1-methyl-2-imidazolyl)methyl]amino}phenolate; Pimp, pyridine-2.6-bis(carbaldehydeimine-2-hydroxyphenyl); Pyane, pyridine[15]aneN₅, 3,6,9,12,18-pentaazabicyclo[12.3.1]octadeca-1(18),14,16-triene; Py₂N₂, 2,11-diaza-[3,3](2,6)pyridinophane; S-1, (1*S*,2*S*)-*N*,*N*'-bis-[3-tert-butyl-5-chloro methyl-salicylidine]-1,2-cyclohexanediamine; S1m, chiral macrocyclic salen ligand; SalbutOH, 1,4-bis(salicylidenamino)butan-2-ol; Salen, 1,2-bis(salicylidenamino)ethane; Salophen, N,N'-bis(salicyliden)-1,2-phenylendiamine; Salpn, 1,3-bis(salicylidenamino)propane; SalpnOH, 1,3-bis(salicylidenamino)propan-2-ol; SL, aza-scorpiand like macrocycles; S₂Py₃, 2,6-bis[((2-pyridylmethyl)thio)methyl]pyridine; TBAP, 5,10,15,20-tetrakis(4-benzoate)porphyrin; TDMImP, 5,10,15,20-tetrakis-(1,3-dimethylimidazo lium-2-yl)porphyrin; TE-2-PyP, 5,10,15,20-tetrakis(N-ethyl-2-pyridyl)porphyrin; TECP, 5,10,15,20-tetrakis-(ethoxycarbonyl)porphyrin; TM-2-PyP, 5,10,15,20-tetrakis(Nmethyl-2-pyridyl)porphyrin; TM-3-PyP, 5,10,15,20-tetrakis(N-methyl-3-pyridyl)porphyrin; TM-4-PyP, 5,10,15,20-tetrakis-(N-methyl-4-pyridyl)porphyrin; TMIMA, trisl(1methyl-2-imidazolyl)methyl]amine; TnBuOE-2-PyP, 5,10,15,20-tetrakis(N-(2'-n-butoxyethyl)pyridinium-2-yl)porphyrin; TnHex-3-PyP, 5,10,15,20-tetrakis(N-hexyl-3pyridyl)porphyrin.

* Corresponding author.

E-mail address: signorella@iquir-conicet.gov.ar (S. Signorella).

Keywords: Manganese complexes Catalase mimics Superoxide dismutase mimics Structure/activity investigations have been directed to the design of low molecular-weight antioxidant catalysts (SOD- or CAT-mimics). To disproportionate superoxide and hydrogen peroxide efficiently, the reduction potential of MnSOD and MnCAT is fine-tuned to values much lower than that of the Mn³⁺(aq)/Mn²⁺(aq) couple. In the artificial catalysts, the number and type of ligands, the local charge, the geometry around the metal, are among the factors that introduce a way of tuning the redox potential of Mn to face redox reactions. However structural and electronic factors affecting SOD activity do not parallel those controlling CAT activity. This review focus on synthetic mononuclear Mn complexes with SOD and/or CAT activity, stressing the role of ligand donor sites, endogenous acid/base groups, metal environment and second-sphere effects in the catalytic activity.

© 2018 Elsevier B.V. All rights reserved.

Contents

1.	Intro	vduction	76
2.	Mang	ganese superoxide dismutases and catalases	77
	2.1.	Manganese superoxide dismutase (MnSOD)	77
	2.2.	Manganese catalases (MnCAT)	77
3.	Synth	hetic catalytic antioxidants	78
	3.1.	Mn-Schiff base complexes	78
		3.1.1. Mn-Schiff base complexes with antioxidant activity	78
		3.1.2. Mechanism of CAT activity for Mn-salen and Mn-salpn complexes	84
	3.2.	Mn-amine and diamine complexes	85
	3.3.	Mn(II) azamacrocyclic complexes	89
	3.4.	Manganese porphyrins (MnPs) and corroles	93
		3.4.1. MnPs as antioxidant agents	93
		3.4.2. Anti- and pro-oxidant activities of MnPs	97
		3.4.3. Manganese(III) corroles	98
	3.5.	Other Mn complexes of acyclic ligands	98
4.	Concl	lusions	99
	Ackn	10wledgments	00
	Refer	rences 1	00

1. Introduction

Molecular oxygen is indispensable to the life on this planet and essential for efficient aerobic metabolism where the four electron reduction of O₂ to water constitutes the terminal reaction of the aerobic respiratory chain. However, during normal cellular metabolism, O₂ can be converted to the superoxide radical anion (O_2^{-}) , a deleterious reduction intermediate species which is the primary source for other reactive oxygen species (ROS) such as hydrogen peroxide (H₂O₂) and hydroxyl radical (HO[•]). These powerful oxidants can attack tissues, membranes and their proteic environment, thereby turning into lethal agents against cell structure and functioning. In vivo protection occurs via suppression of the ROS cytotoxins through a cascade of dismutation processes. These reactions are mediated by two key classes of metalloenzymes: superoxide dismutases (SODs) and catalases (CATs). Dismutation of O_2^{-} leads to O_2 and H_2O_2 either spontaneously or through the enzymatic processes catalyzed by SODs [1]. As a consequence, wherever O_2^- is generated, H_2O_2 is also formed. H₂O₂ is stable at biological pH, easily crosses lipid membranes [2] and can readily react with reduced transition metal ions to generate the highly reactive HO[•] by Fenton-like reactions [3]. Accordingly, full detoxification of O_2^- may not be achieved by SOD alone, but only when it is coupled to CAT, the enzyme that catalyzes the disproportionation of H_2O_2 to molecular oxygen and water [4]. In a variety of pathological situations, ROS generation overwhelms the capacity of endogenous scavengers to neutralize them and tissues become vulnerable to damage. Exogenous SOD and CAT have been used as therapeutic agents to reduce oxidative stress damage [5], although with limited success [6]. The major limitations associated with the therapeutic applications of these enzymes are their large size, solution instability, short half-lives, antigenicity and high-manufacturing costs [7]. To overcome these limitations, investigations have been directed to the design of low molecular-weight antioxidant catalysts (SOD- or CAT-mimics) [8]. These catalytic ROS scavengers would be clinically superior to stoichiometric ones [9] and should have better bioavailability than exogenously administered antioxidant enzymes. Among them, manganese based mimics are the most widely investigated, mainly because of its low toxicity (Mn is not prone to generate HO' in Fenton type reactions) compared, for instance, to iron or copper in the case that free metal is released from the catalyst [10]. Most of these manganese-based catalytic antioxidants have been tested as decomposition catalysts for O_2^- . However, since catalase activity would be a key attribute for synthetic ROS scavenging compounds, some efforts have focused on development of catalysts with dual SOD/CAT activity for possible therapeutic use. This review focus on advances on synthetic Mn complexes with SOD and/or CAT activity that can be used as artificial small molecule catalysts for ROS detoxification, with emphasis on the role of redox potentials, coordination geometry and ligands donor sites in the mimicking activity. Our purpose is to compare structural and electronic properties of manganese complexes with SOD, CAT or dual SOD/ CAT activity and analyze how these features modulate their reactivity.

Download English Version:

https://daneshyari.com/en/article/7747546

Download Persian Version:

https://daneshyari.com/article/7747546

Daneshyari.com