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ARTICLE INFO ABSTRACT
Affiflf-’ history: Silver nanoparticles (AgNPs) are exponentially used in various consumer products including medical
Received 22 September 2017 devices. This production leads to an increasing human exposure to silver in different forms. Indeed,
Accepted 5 March 2018 AgNPs are subject to various transformations in aqueous aerobic conditions that trigger the production
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of Ag(I) species. The main environmental transformation produces the non-toxic species silver sulfide.
Transformations occurring in mammals are more diverse and mainly depend on the interaction of
K,‘iywords" . AgNPs with thiol, chloride and proteins. Any of these species have a different impact on AgNPs and
glu;/firrnampamc es induces AgNP dissolution into Ag(I) species, aggregation and/or stabilization. The transformations occur-

ring also depend on the exposure route. The main one is dietary but medical exposure is also growing
Silver speciation with the massive use of nanosilver as biocide in medical devices. For the former, AgNP modifications
Electron microscopy and Ag distribution has been extensively studied using in vitro and in vivo models, while data related
Cellular imaging to medical use of nanosilver are scarce. However, most of the in vitro and in vivo data often remain incon-
sistent. In this review, we describe both in vitro, in cellulo and in vivo data about AgNP transformations,
silver speciation and biodistribution. We try to reconcile all these data and describe the latest methods
for the future studies of AgNP fate in mammals.
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1. Introduction and background
1.1. Silver nanomaterial generalities

Silver is used as biocide since antiquity, and its “nano” form has
been developed and increasingly used since the nineties [1]. Silver
nanomaterials (AgNMs) are widely used to preserve consumer and
medical products thanks to their prolonged release of Ag(I) species,
e.g. in clothing [2], home appliances [1], food industry [3] as well as
in medical fields [4] (for review see [5]). Moreover, the physical
properties of AgNMs, photophysical in particular, also lead to their
increased use for various applications: sensors [6-9], electronic
devices [10], etc. Various Ag shapes can be produced, rods, stars,
wires [11], plates, but the most common is probably the sphere,
named Ag nanoparticle (AgNP).

Whatever the shape, AgNMs are constituted of an Ag(0) core
synthesized by the reduction of Ag(I) ions using chemical or
physico-chemical processes [12,13]|. The former process uses
reductants such as citrate, alone or in the presence of additives that
help to control AgNM size and shape [14,15]. The latter can be
done by photophysical reduction for instance [16]. Alternative
solutions, considered as greener processes, have massively devel-
oped in the last years (for review see [17,18]). They use cellular
extracts from different organisms, such as plants or bacteria, to
perform Ag(I) reduction in order to produce AgNMs. An organic
coating, weakly bound to the surface, is generally added to stabi-
lize these AgNMs. The most common coatings for conventional
AgNPs are polyvinylpyrolidone (PVP) and citrate. The former is a
polymer highly stabilizing the NPs by steric hindrance, while the
latter is a small organic molecule in dynamic equilibrium with
citrate in solution and therefore easily exchangeable.

A recent review highlights the complexity of metal speciation
studies in biological fluids in cases of well-known metals, such as
Cu and Pt [19]. AgNMs are also highly sensitive to the surrounding
environment, and particularly to the redox potential of the media
since oxidative conditions easily trigger the oxidation of Ag(0) at
the surface of the material into Ag(I). On the contrary, Ag(I) can
be reduced to Ag(0) under light illumination. Therefore, the high
reactivity of Ag makes these AgNMs subject to a wide variety of
transformations, especially under aerobic situation in aqueous
media, typical of environmental and biological conditions [5,20].
The diversity of Ag species produced in these conditions makes dif-
ficult to perform relevant studies of AgNM toxicity. AgNPs are
indeed subject to various transformations in the environment
before organism absorption and the life-cycle of the nanomaterial
has to be taken into account in toxicological studies. It has been
described that sulfidation of AgNPs is the major process occurring
environmentally [21,22] (for review see [23]). Several studies have
quantified the release of AgNPs and Ag(I) ions from functionalized
materials and consumer products such as textiles, food packaging
or medical devices but they provide a very wide range of values
from 10 pg up to 2 mg of released Ag per gram of product (for
review see [5]). It is therefore difficult to use these information
to direct study of their impact on Human and the environment.
It also explains why the study of AgNM fate in environmental
and biological media is still an intense field of research.

1.2. AgNP behavior in biological media and species-related toxicity
Nanotoxicology studies are also plethora [24-29] but the condi-

tions used are rarely relevant to real exposure levels, as well as to
the type of species organisms are exposed to (for review see
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