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1. Introduction

Nanoporous materials, such as the classical zeolites and meso-
porous silica, have been intensively investigated as ideal platforms
for various applications, including gas storage, chemical sensing,
energy conversion, catalysis, etc [1-7]. Particularly, due to the high
surface area and confined pore space that can be functionalized,
nanoporous materials have demonstrated great superiority. For
instance, zeolites, constructed by micropores in the range of 0.3-
1.5 nm, have excellent gas adsorption capability. Moreover, zeo-
lites are able to differentiate molecules with different sizes, which
is of vital significance in selective catalysis. These merits, along
with the stability, contribute to the important applications of zeo-
lites in petrochemical industry and synthesis of fine chemicals
[8,9]. As for mesoporous silica with larger pore sizes, the applica-
tions are mostly focused on drugs delivery, energy conversion
and storage, as well as catalysis, thanks to their uniform meso-
pores, moderate surface area, good biocompatibility and ability
to interact with guest species [10-13]. Given the pore size gap
between microporous zeolites and mesoporous silica, it is impor-
tant to find alternative materials possessing ordered pore struc-
tures to bridge the above gap.

Metal-organic frameworks (MOFs), also known as porous coor-
dination polymers (PCPs), featuring well defined pores with diam-
eters ranging from 0 (nonporous) to 9.8 nm, have been proven to
be outstanding candidates for bridging the gap between zeolites
and mesoporous silica. They have achieved rapid development
over the past two decades for diverse applications, such as gas
sorption/separation [14-16], catalysis [17-28], chemical sensing
[29-31], energy storage and conversion [32-34], etc. Featuring
well-defined crystalline structures, adjustable pore topology, ultra-
high surface areas and excellent tailorability, MOFs have shown
huge potential especially in catalysis [35-38]. However, due to
the fragile coordination bonding between metal nodes and organic
ligands, the instability, especially moisture sensitivity [39], limits
the practical applications of MOFs. Taking photocatalytic water
splitting as an example, the reaction environment (aqueous solu-
tions) and the existence of sacrificial agent may exert a negative
influence on the stability of MOFs [40]|. Moreover, in electrocat-
alytic reactions, the low electrical conductivity further impedes
the application of pristine MOFs and very limited related studies
were reported [41,42]. The good thing is that, when served as tem-
plates/precursors, MOFs can be converted to much more stable and
conductive carbon/metal-based porous materials than pristine
MOFs, with inherited characters of pristine MOFs to a large degree,
such as large surface area, composition diversity and dispersion,
tailored porosity [43-49]. In addition, considering that most MOFs

are constructed by transition metals (Mn, Fe, Co, Ni, Cu, etc.) and
organic ligands containing C, H, O, N, S, etc., which are usually nec-
essary elements in catalytic systems, the derivatives with the same
elementary compositions as parent MOFs would possess great
potentials in catalysis [50-59]. In addition, compared with tradi-
tional catalysts, the MOF-derived porous materials have more
advantages, such as large surface area, high porosity, adjustable
morphology and uniform heteroatom doping, which are consid-
ered to be crucial to their catalysis. Therefore, many MOF-
derived porous materials even afford better performances than
their parent MOFs.

As a matter of fact, the derivation of MOFs opens up an avenue
to the preparation of diversified porous materials with unique
advantages in comparison to traditional nanoporous materials,
mainly on the following points: (i) simple and convenient syn-
thetic procedures without additional templates (providing a sim-
ple method to fabricate porous materials); (ii) ordered porous
structure and easy adjustment of pore size (guaranteeing high-
flux mass transfer and easy accessibility of active sites); (iii) high
surface area (exposure of high-density active sites); (iv) control-
lable size and inherited morphology of pristine MOFs (benefitting
the optimization of catalytic performance); (v) facile doping of
highly dispersed heteroatoms (modulating the local electronic
structure of catalysts); (vi) accurate control of active sites through
the predesign of MOF precursors (favoring the establishment of
structure-performance relationship). Therefore, MOF-derived por-
ous materials, with large surface area, high stability and tunable
structures, are very promising candidates for catalysis [50-61].

In this review, we present a systematic introduction of deriva-
tion strategies of MOFs to porous materials at first. Then an over-
view on the recent progress of MOF-derived nanomaterials for
various catalytic applications is summarized. For heterogeneous
catalysis, MOF-derived porous materials have great potential in
rational loading of active sites and functionalization with heteroa-
toms, which is critical for reactions such as oxidation, reduction
and CO, fixation. Moreover, many metal-based compounds, such
as metal oxides, metal sulfides and others derived from MOFs are
semiconductors, which are favorable for photocatalysis. The poros-
ity of MOF-based porous materials creates the opportunity for
rapid consumption of photo-induced charge carriers, resulting in
improved photocatalytic efficiency. In terms of electrocatalysis,
the large surface area, appropriate pore sizes as well as conductiv-
ity in the porous materials derived from MOFs are closely related
to the performance of electrocatalysts. Finally, particular chal-
lenges as well as research opportunities of porous materials
derived from MOFs for further development toward catalysis are
also critically discussed.
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