Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/engfracmech

Load-independent creep constraint parameter and its application

Key Laboratory of Pressure Systems and Safety, Ministry of Education, East China University of Science and Technology, Shanghai 200237, China

ARTICLE INFO

Article history: Received 22 May 2013 Received in revised form 24 October 2013 Accepted 18 December 2013

Keywords: Creep constraint Load independence Finite element Creep crack growth Application

ABSTRACT

A load-independent creep constraint parameter R^* was proposed, and its load-independence was validated using finite element results in previous studies. A fixed distance r = 0.2 mm from a crack tip is chosen to define the R^* , and the R^* at steady-state creep can be used to evaluate constraint level with little conservatism for whole creep time. The R^* can be used for ranking constraint levels for different specimens or components, and for predicting constraint-dependent creep crack growth rates. The constraint-dependent creep crack growth rate equations of a Cr–Mo–V steel have been obtained, and it may be used in creep life assessments.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Many experimental and theoretical evidences have shown that crack-tip constraint state has great influence on the fracture behavior of materials, and the loss of constraint causes the increases in fracture toughness [1]. The quantification of constraint has been widely investigated within the elastic–plastic fracture mechanics frame, and led to the development of two parameter fracture mechanics, such as J-T, J-Q and $J-A_2$ [2–5]. In these approaches, the first parameter J integral sets the size scale over which high stresses and strains develop, and the secondary parameters T [2], Q [3,4] and A_2 [5] were introduced to quantify the crack-tip constraint. The Hutchinson–Rice–Rosengren (HRR) singular stress field or the small scale yielding (SSY) solution with T-stress = 0 is generally used as the reference field to study the crack-tip constraint [1,3,4,6,7].

Under creep conditions, some experimental and theoretical evidences have shown that constraint can affect creep crack growth (CCG) rate [8–13]. In a recent study, it has been found that there is a significant constraint effect on CCG rate in low C^* region [14], and the CCG rates increase with increasing out-of-plane constraint (specimen thickness). To achieve accurate structural integrity assessment for high temperature components, it is necessary to find a simple and accurate constraint parameter to quantify the creep crack-tip constraint level in specimens or components, and then the correlation of constraint-dependent CCG rates of specimens or components can be obtained. However, the studies for two-parameter characterization of creep crack-tip fields are very limited. The creep crack-tip stress and strain rate fields are usually described by the C^* –Q two-parameter and the Q is used to quantify the constraint [15–17]. The effect of in-plane constraint on CCG using Q parameter was examined [16]. Combined the C^* –Q two-parameter concept with the NSW model, Nikbin [13] investigated the effect of constraint on the CCG rate. Based on the C^* –Q two-parameter concept and finite element (FE) analysis, Bettinson et al. [17] examined the effect of specimen type and load level on the Q from short to long term creep conditions for elastic-creep materials.

* Corresponding authors. Tel.: +86 021 64252681; fax: +86 021 64253513. E-mail addresses: gzwang@ecust.edu.cn (G.Z. Wang), sttu@ecust.edu.cn (S.T. Tu).

0013-7944/\$ - see front matter © 2013 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.engfracmech.2013.12.015

Nomenclature	
а	crack length
a a	initial crack length
à	creep crack growth rate
\dot{a}_0	creep crack growth rate from the standard specimen
A	coefficient in the power-law creep stain rate expression
В	specimen thickness
B_n	net specimen thickness
<i>C</i> *	C [*] integral analogous to the <i>I</i> integral
C(t)	C(t) integral
D_0	material constants of CCG rate
Ε	Young's modulus
In	dimensionless constant related to <i>n</i>
J	J-integral
L	characteristic length, usually is set as 1 m
п	power-law creep stress exponent or power-law stain hardening exponent in Ramberg–Osgood relation
q	material constant of CCG rate
Q	constraint parameter under elastic-plastic condition
Q [∞]	load-independent constraint parameter under elastic-plastic condition
K D*	creep constraint parameter
К D*	our-independent creep constraint parameter
κ _{avg} P*	average value of A along 5D clack from
r_{z0}	distance from a crack tin
r.	creen change zone
t	creep time
trad	creep redistribution time
W	specimen width
Ζ	distance from specimen center along crack front
α	strain hardening coefficient in Ramberg–Osgood relation
δ_{ij}	dimensionless function of n , θ
60 03	yield strain
Ê ₀	creep strain rate at yield stress
θ	polar coordinate at the crack tip
σ_0	yielding stress
σ_{22}	opening stress
σ_{ij}	deviatoric stress
0 _{ij}	
0	101350113 14110
Abbreviations	
3D	three dimension
CCG	creep crack growth
СТ	compact tension
CT2	compact tension specimen with 2 mm thickness
CT5	compact tension specimen with 5 mm thickness
CT10	compact tension specimen with 10 mm thickness
CT10-SC	G compact tension specimen with 10 mm thickness and side grooves
CCT	center-cracked tension
FEM	finite element method
LSC	large-scale creep
LSY	large-scale yield
PE	plane strain
PS	plane stress
SENB	single-edge notched bend
SENT	single-edge notched tension
$SEINI_{\Delta p}$	single-eage notched tension with 0.05 w loading point offset
SSC	small-scale vield
331	אוומוו־גרמור אורות

Download English Version:

https://daneshyari.com/en/article/774794

Download Persian Version:

https://daneshyari.com/article/774794

Daneshyari.com