Contents lists available at ScienceDirect

## **Engineering Fracture Mechanics**

journal homepage: www.elsevier.com/locate/engfracmech

# Three-dimensional *T*-stresses for three-point-bend specimens with large thickness variation

### Kai Lu<sup>a,\*</sup>, Toshiyuki Meshii<sup>b</sup>

<sup>a</sup> Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui, Japan <sup>b</sup> Faculty of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui, Japan

#### ARTICLE INFO

Article history: Received 24 October 2013 Accepted 17 December 2013

Keywords: Elastic T-stress Three-point-bend specimen Finite element analysis Fracture toughness Constraint effect

#### ABSTRACT

Three-point-bend (3 PB) test specimens are useful for the systematic investigation of the influence of statistical and constraint loss size effects on the cleavage fracture toughness of a material in the ductile-to-brittle transition temperature range. Because the in- and out-of-plane elastic *T*-stresses ( $T_{11}$  and  $T_{33}$ ) are a measure of the crack-tip constraint and even the in-plane  $T_{11}$  exhibits three-dimensional (3D) effects, the 3D *T*-stresses solutions were obtained by running finite element analyses (FEA) for 3 PB specimens with wide ranges of the crack depth-to-width ratio (a/W = 0.2-0.8) and the specimen thickness-to-width ratio (B/W = 0.1-40). The results show that the 3D  $T_{11}$  at the specimen mid-plane tended to deviate from the 2D  $T_{11}$  as B/W increased, with the deviation saturating for  $B/W \ge 2$ . The mid-plane  $T_{33}$  increased with B/W and was close to the plane strain value  $vT_{11}$  for  $B/W \ge 2$ .

© 2013 Elsevier Ltd. All rights reserved.

#### 1. Introduction

Three-point-bend (3 PB) test specimens are useful for the systematic investigation of the statistical and constraint loss size effects on the cleavage fracture toughness of a material in the ductile-to-brittle transition temperature range [1,2]. Because the in-plane and out-of-plane *T*-stresses ( $T_{11}$  and  $T_{33}$ ) are a measure of the crack-tip constraint and even the in-plane  $T_{11}$  exhibits three-dimensional (3D) effects [2–4], the 3D *T*-stresses solutions were obtained by running finite element analyses (FEA) for 3 PB specimens with wide ranges of the crack depth-to-width ratio (a/W = 0.2-0.8) and the specimen thickness-to-width ratio (B/W = 0.1-40). The 2D  $T_{11}$  solutions have been provided for 3 PB specimen in many numerical studies [5–10].

The results show that the 3D  $T_{11}$  at the specimen mid-plane tended to deviate from the 2D  $T_{11}$  as B/W increased, with the deviation saturating for  $B/W \ge 2$ . The mid-plane 3D  $T_{11}$  for B/W = 0.1 and 40 was high as 54% when a/W = 0.2, suggesting that 3D effects should be properly considered for cases of short crack length, especially when  $T_{11}$  is negative. The mid-plane  $T_{33}$  increased with B/W and was close to the plane strain value  $vT_{11}$  for  $B/W \ge 2$ .

#### 2. T-stress

In an isotropic linear elastic body containing a crack subjected to symmetric (mode I) loading, the Williams series expansion [11] of the 3D stress components near the crack tip field can be written as [3]

\* Corresponding author. Fax: +81 776 27 9764. *E-mail address:* kai\_lu@u-fukui.ac.jp (K. Lu).

0013-7944/\$ - see front matter © 2013 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.engfracmech.2013.12.011







| В                                 | specimen thickness                          |
|-----------------------------------|---------------------------------------------|
| Ε                                 | Young's modulus                             |
| F                                 | unit magnitude (see Eq. (2))                |
| I                                 | interaction integral                        |
| <i>K</i> .                        | local mode I stress intensity factor (SIF)  |
| K                                 | 2D SIE for elastic analysis                 |
| N <sub>0</sub>                    | 2D SIL IOI Clastic allarysis                |
| R <sub>s</sub>                    | crack tube radius                           |
| S                                 | support span for 3PB specimen               |
| T <sub>11</sub> , T <sub>33</sub> | T-stresses                                  |
| W                                 | specimen width                              |
| а                                 | crack length                                |
| <b>r,</b> θ                       | in-plane polar coordinates                  |
| $X_i$                             | crack-tip local coordinates $(j = 1, 2, 3)$ |
| $\Delta l$                        | singular element size                       |
| β <sub>11</sub> , β <sub>33</sub> | normalized T-stresses                       |
| 822                               | out-of-plane strain                         |
| ~ ) )                             | Deissen's ratio                             |
| V                                 | ruissuii s iduu                             |
| $\sigma_{ii}$                     | stress components $(i, j = 1, 2, 3)$        |
| -                                 |                                             |

where *r* and  $\theta$  are the in-plane polar coordinates of the plane normal to the crack front shown in Fig. 1,  $K_I$  is the local mode I stress intensity factor (SIF) and *v* is Poisson's ratio. Here,  $x_1$  is the direction formed by the intersection of the plane normal to the crack front and the plane tangential to the crack plane.  $T_{11}$  and  $T_{33}$  are the amplitudes of the second-order terms in the three-dimensional series expansions of the crack front stress field in the  $x_1$  and  $x_3$  directions, respectively.

Different methods have been applied to compute the elastic *T*-stress for test specimens, as summarized by Sherry et al. [10]. In this study, an efficient finite element method developed by Nakamura and Parks [3] based on an interaction integral was used to determine the elastic *T*-stresses.

The crack tip  $T_{11}$ -stress on the crack front is related to the interaction integral by

$$T_{11} = \frac{E}{1 - v^2} \left\{ \frac{I}{F} + v \varepsilon_{33} \right\}$$
(2)

where *E* is Young's modulus, *v* is Poisson's ratio and  $\varepsilon_{33}$  identifies the out-of-plane strain at the crack tip in the direction tangential to the crack front. *I* represents the interaction integral, and *F* indicates the unit magnitude (*F* = 1).

Once the  $T_{11}$ -stress is obtained, the  $T_{33}$ -stress can be obtained using the following relationship:





Download English Version:

## https://daneshyari.com/en/article/774805

Download Persian Version:

https://daneshyari.com/article/774805

Daneshyari.com