Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/inoche

Short communication

Extended structure constructed from {Co₇} cluster-containing sandwichtype polyoxometalate

Ting-Ting Dou^{a,b}, Hong-Guo Hao^b, Xinyan Zhang^{a,*}, Song Guo^b, Shuang Yao^{a,b,**}, Zhi-Ming Zhang^b

^a School of Chemical and Environmental Engineering, Changchun University of Science and Technology, Weixing Road No. 7989, Changchun, Jilin 130022, China
^b Institute for New Energy Materials & Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China

GRAPHICAL ABSTRACT

A new 2D layer-like network composed of Co₇ cluster-containing sandwich-type polyoxometalate was obtained via the transformation of hexavacant polyoxoanion to trivacant polyoxoanion.

ARTICLEINFO

Keywords: Polyoxometalate Crystal structure Sandwich Extended structure

ABSTRACT

We report a new 2D layer-like network composed of Co₇ cluster-containing sandwich-type polyoxometalate, Li₁₀Na₂[Co(H₂O)₃(CH₃COO)]₂{[Co₇(H₂O)₄(OH)₂(Ale)₂][PW₉O₃₄]₂}·20H₂O (1) {H₅Ale = Alendronic acid}, which was synthesized by the conventional aqueous solution method. Single-crystal X-ray diffraction analysis reveals that 1 crystallizes in the monoclinic $P_{2(1)/n}$ space group with unit cell a = 12.5391 (1) Å, b = 25.2531 (2) Å, c = 22.0462 (2) Å, $\beta = 97.728(1)^{\circ}$, Z = 2, V = 6917.55 (10) Å³. This compound was further characterized by powder X-ray diffraction (PXRD), IR spectra and thermogravimetric (TG) analyses to confirm its structure and composition. As a result, polyoxoanion in 1 consists of two { $A-PW_9O_{34}$ }⁹⁻ units, which are fused together by a {Co₇(H₂O)₄(OH)₂(Ale)₂} {**Co**₇} cluster into a sandwich-type structure. In the {**Co**₇} cluster, all the Co²⁺ ions are connected together by two Ale ligands and two OH groups into the hepta-nuclear cobalt cluster {**Co**₇}. Further, the sandwich-type polyoxoanions are connected together by two {CH₃CO₂Co(H₂O)₃) units, resulting in the first 2D layer-like structure consisting of Co₇-containing sandwich polyoxoanion. Electrochemical and electrocatalytic studies reveal that 1 exhibits good electrocatalytic activity toward the reduction of H₂O₂ in neutral aqueous solution.

* Corresponding author.

https://doi.org/10.1016/j.inoche.2018.07.012

Received 4 June 2018; Received in revised form 5 July 2018; Accepted 9 July 2018 1387-7003/ © 2018 Elsevier B.V. All rights reserved.

^{**} Correspondence to: S. Yao, School of Chemical and Environmental Engineering, Changchun University of Science and Technology, Weixing Road No. 7989, Changchun, Jilin 130022, China.

E-mail addresses: zhangxinyan@cust.edu.cn (X. Zhang), shuangyao@email.tjut.edu.cn (S. Yao).

Inorganic Chemistry Communications 95 (2018) 117-121

Design and synthesis of new polyoxometalates (POMs) have attracted much attention as their versatile architectures and potential applications in many fields, such as catalysis, magnetism, and medicine [1-7]. POMs can also act as the support to incorporate addenda metal centers and non-metal heteroatoms to functionalize these inorganic clusters [8-11]. In this filed, lacunary polyoxotungstates represent an important subclass of the POMs for incorporating addenda functional groups as the wide existence of W-based vacant POMs. Up to date, monovacant $\{XW_{11}O_{39}\}$ (X = P, Si and Ge) and $\{P_2W_{17}O_{61}\}$, divacant $\{XW_{10}O_{39}\}$ (X = Si and Ge), trivacant ${XW_9O_{34}}$ (X = P, Si and Ge), ${P_2W_{15}O_{56}}$ and hexavacant $\{P_2W_{12}O_{48}\}$ (P₂W₁₂) polyoxotungstates have been synthesized [12-16] and widely used in constructing transition-metal-substituted POMs [17-27]. In recent years, a series of new POM clusters, such as $[Co_9(H_2O)_6(OH)_3(HPO_4)_2(PW_9O_{34})_3]^{16-}$ [21], $[Co_4(H_2O)_2(B-\alpha-$ [Ni₄(H₂O)₂(PW₉O₃₄)₂]¹⁰⁻ PW₉O₃₄)₂]¹⁰⁻ [22], [23.24]. $\{[Mn_2^{IV}Mn_6^{III}Mn_4^{II}(\mu_3-O)_6(\mu-OH)_4(H_2O)_2(CO_3)_6][B-\beta-SiW_6O_{26}]_2\}$ [25], $[\mathrm{Ni}_{7}\text{-}(\mathrm{OH})_{4}(\mathrm{H}_{2}\mathrm{O})(\mathrm{CO}_{3})_{2}(\mathrm{HCO}_{3})(A\text{-}\alpha\text{-}\mathrm{SiW}_{9}\mathrm{O}_{34})(\beta\text{-}\mathrm{SiW}_{10}\mathrm{O}_{37})]^{10}\text{-},$ $[{Ni_6(H_2O)_4(\mu_2-H_2O)_4(\mu_3-OH)_2}(x-SiW_9O_{34})_2]^{10-1}$ [26], {[Cu $(en)_{2}_{1.5}[Cu(en)(2,20-bipy)(H_2O)_n]Ce[(\alpha-PW_{11}O_{39})_2]\}_{6}$ [27], [{Co₄ $(OH)_3(PO_4)_4(XW_9O_{34})_4]^{n-}$ (X = Si, Ge, P and As) [1,10], [{(B-\alpha- $PW_9O_{34})Co_3(OH)(O_3PC(O(C_3H_6NH_3)PO_3))_2Co]^{14-}, [{(B-PW_9O_{34})}^{14-}, [{(B-PW_9O_$

Ni₃(OH)(H₂O)₂ (O₃PC(O)(C₃H₆NH₃)PO₃) $_2$ Ni]¹⁴⁻ and [{(*B*- α -PW₉O₃₄)Ni₃(OH)(H₂O)₂(HAle) $_2$ Ni] [28–30], were designed and synthesized. In these compounds, several cobalt, nickel and manganese clusters were stabilized by lacunary POMs to construct active photocatalysts for water splitting [10, 31–34]. Also, the Co₇, Fe₉, and Mn₆ clusters are isolated by the lacunary POM units to form transition-metal clusters with single molecule magnet behaviour. So, it is still a charming and promising field to introduce transition-metal clusters with different structures and compositions, so as to construct multiple functional properties.

In this field, hexavacant P_2W_{12} with high-vacant sites have been regarded as an efficient building units for trapping high-nuclear transition-metal clusters [16,35]. Up to date, Cu_{20} , Fe_{27} , Fe_{16} , Nb_6 , Nb_{24} and Mn_7 clusters were all synthesized and exhibited interesting functionalities [36–41]. In this field, we have focused on functionalization of the hexavacant P_2W_{12} unit with different metal centers for a long time, and a series of P_2W_{12} -based POMs, such as Ni₆, Co_6 , Mn_2 , Gd/Mncontaining crown-type clusters were obtained [42–44]. In the synthesis of these compounds, it could be found that the hexavacant P_2W_{12} is a metastable unit in the aqueous solution, and could transfer into trivacant POMs under the hydrothermal conditions [45], and the conversion

Fig. 1. Structure of (a) H_5Ale ligand, (b) hexavacant POM [$P_2W_{12}O_{48}$], (c) {Co₇} cluster, (d) sandwich polyoxoanion in **1**, (e) sandwich polyoxoanion decorated by two {Co (H_2O)₃(CH₃COO)]} units. Color codes: W, green octahedron; Co, brown; P, purple; C, gray; H, dark blue; N, black; O, red. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 2. (a) Linking modes between the sandwich polyoxoanions and the linking units $\{Co(H_2O)_3(CH_3COO)\}\}$; (b) coordination modes of Ale ligands and the central $\{Co_7\}$ cluster; (c) 2D spatial configuration of 1.

Download English Version:

https://daneshyari.com/en/article/7748362

Download Persian Version:

https://daneshyari.com/article/7748362

Daneshyari.com