EI SEVIED

Contents lists available at ScienceDirect

Inorganic Chemistry Communications

journal homepage: www.elsevier.com/locate/inoche

Short communication

Luminescence homoleptic cyclic tetranuclear $[Ln_4(BTFA)_{10}(\mu_3-OH)_2(H_2O)_4]$ complexes (Ln = Eu or Tb)

Kaimeng Zhang^{a,1}, Xingmei Zhang^{b,1}, Jin Zhou^a, Guorui Fu^a, Yani He^a, Baoning Li^a, Xingqiang Lü^{a,*}

^a School of Chemical Engineering, Shaanxi Key Laboratory of Degradable Medical Material, Northwest University, Xi'an 710069, Shaanxi, China
^b School of Chemistry and Chemical Engineering, Xi'an University, Xi'an 710065, Shaanxi, China

GRAPHICAL ABSTRACT

For Eu^{3+} - or Tb^{3+} -centered luminescent tetranuclear complex $[\text{Ln}_4(\text{BTFA})_{10}(\mu_3\text{-OH})_2(\text{H}_2\text{O})_4]$ (Ln = Eu, **2** or Tb, **3**) with the η^2 -Mode I and the μ -(O)- η^2 -bridging Mode II bonding of the (**BTFA**)⁻ ligands, two μ_3 -(OH)⁻ anions, two μ_1 -coordinating H₂O and two μ_2 -bridging H₂O molecules surrounded from the four Ln³⁺ ions, color-purity red-light ($\Phi_{\text{Eu}}^{\text{L}}$ = 20.1%) for complex **2** while few near-white-light (Φ_{em} = 6.4%) for complex **3** are exhibited, respectively.

ARTICLE INFO

Keywords: Tetranuclear Ln³⁺-β-diketone-hydroxo complex Multiple bonding mode Energy transfer

ABSTRACT

Through self-assembly of the typical β -diketone ligand **HBTFA** (**HBTFA** = 4,4,4-trifluoro-1-phenyl-1,3-butanedione) with LnCl₃·6H₂O in the presence of Et₃N, the six-tenth in the η^2 -Mode I and the four-tenth in the μ -(O)- η^2 bridging Mode II of the ten **BTFA**⁻ ligands, together with the involvement of two μ_3 -(OH)⁻ anions, two μ_1 coordinating H₂O and two μ_2 -bridging H₂O molecules, endow the formation of homoleptic cyclic tetranuclear complexes [Ln₄(BTFA)₁₀(μ_3 -OH)₂(H₂O)₄] (Ln = La, **1**; Eu, **2**; Tb, **3** or Gd, **4**), respectively. Moreover, attributing to effective ligand-to-Ln³⁺ transfer energy, color-purity red-light ($\Phi_{Eu}^L = 20.1\%$) for complex **2** while few nearwhite-light ($\Phi_{em} = 6.4\%$) for complex **3** are exhibited, respectively, despite the (μ_3 -OH)⁻-and-H₂O-induced OHoscillators surrounded from the four Ln³⁺ ions.

In contrast to mononuclear structure of either $tris-\beta$ -diketonate-Ln³⁺-complexes [1] or *tetrakis-β*-diketonate-Ln³⁺-complexes [2] with three or four enolic β -diketonate ligands in a typical O^o-chelating mode (η^2 -Mode-I, Scheme 1), self-assembly of the homoleptically

* Corresponding author.

E-mail address: lvxq@nwu.edu.cn (X. Lü).

¹ These authors contributed equally.

https://doi.org/10.1016/j.inoche.2018.07.026

Received 13 May 2018; Received in revised form 17 July 2018; Accepted 17 July 2018 Available online 18 July 2018

1387-7003/ © 2018 Elsevier B.V. All rights reserved.

Scheme 1. The bonding modes of the β -diketonate ligand, the (OH)⁻ anion and the coordinated H₂O molecule in polynuclear Ln³⁺- β -diketone complexes.

polynuclear Ln^{3+} - β -diketone-complex with a predetermined structure is much challenging. From the viewpoint of synthetic strategies, Ln³⁺hydrolysis [3] or organic-base-deprotonation [4] gives hydrophilic hydroxo ((OH)⁻) and/or oxo ((O)²⁻) bridging to Ln³⁺ ions for a cluster core, from which, the ligation of several β -diketonate ligands with η^2 -Mode-I-included multiple bonding modes ((μ -O)- η^2 -Mode-II, (μ -O)₂- η^2 -Mode-III and (μ -O- η)-Mode-IV also in Scheme 1) in the outer-cluster periphery is favorable for the formation of a $Ln^{3+}-\beta$ -diketone-hydroxo/ oxo complex species. As to its finite-sized polynuclear complex, the structural diversity is highly dependent with the complicated effects of high and variable coordination number of the Ln³⁺ ion, steric hindrance of the β -diketone-type ligand as well as specific self-assembling reaction condition (pH, solvent or stoichiometry etc). Nonetheless, in consideration of the significant spin-orbit coupling between multiple Ln³⁺ ions within, concerted efforts have been devoted to homoleptically polynuclear Ln^{3+} - β -diketone complexes with desirable optical [5] and magnetic properties [6].

As a matter of fact, higher-nuclearity up to nonanuclear $([Ln_9(acac)_{16}(OH)_9(O)]$ [7] or $[Y_{9-x}Ln_x(acac)_{16}(OH)_9(O)]$ [8] with η^2 -Mode-I for the coordinated acac⁻ ligands, $(\mu_3$ -OH)₈ and $(\mu_4$ -OH) for nine (OH)⁻ anions and one $(\mu_4$ -O)²⁻ anion; also shown in Scheme 1) or tetradecanuclear [9] cluster ([$Ln_{14}(acac)_{24}(OH)_{18}$] with η^2 -Mode-I for the sixteen and $(\mu-O)$ - η^2 -Mode-II for the eight of the twenty-four coordinated (acac)⁻ ligands, $(\mu_3$ -OH)₁₆ and $(\mu_4$ -OH)₂ for eighteen (OH)⁻ anions), is exclusively limited from the smallest hindrance β -diketone ligand Hacac (acetylacetone). In contrast, the involvement of solvents in the inner-cluster core restrains the core's further aggregation with the decreased tetranuclear clusters ($[Ln_4(acac)_8(OCH_3)_2(CH_3OH)_2(\mu_3-\mu_3)_2(\mu_3-\mu_3))$ OH_{2}]) [10]. The rigid β -diketone ligand HDBM (dibenzoylacetone) is commonly facilitated to exhibit tetranuclear [11] ([Ln₄(DBM)₁₀(OH)₂] with η^2 -Mode-I for the four and $(\mu - O)$ - η^2 -Mode-II for the six of the ten coordinated (DBM)⁻ ligands, $(\mu_3$ -OH)₂ for the two (OH)⁻ anions) to pentanuclear [12,13] ([Ln₅(DBM)₁₀(OH)₅]) with η^2 -Mode-I for the six and $(\mu - O) - \eta^2$ -Mode-II for the two and $(\mu - O)_2 - \eta^2$ -Mode-III for the two of the ten coordinated DBM⁻ ligands, $(\mu_3$ -OH)₄ and $(\mu_4$ -OH) for the five $(OH)^{-}$ anions) Ln^{3+} -DBM-hydroxo complexes, where their nuclearity change is strictly relied on the relative ionic radius (lanthanide contraction) [14,15]. Actually, in accompany with the few tetranuclear [16] to octanuclear [17] and to nonanuclear [4] examples of $Ln^{3+}-\beta$ diketone-hydroxo/oxo complexes based on other typical β -diketone li-Hthd (hfpd-H (1,1,1,5,5,5-hexafluoropentane-2,4-dione), gands (2,2,6,6-tetramethylheptane-3,5-dione) and HBA (benzoylacetone)) with modest hindrance effects, to the best of our knowledge, the construction of β -diketone ligand HBTFA's Ln³⁺-clusters was also not reported. Herein, we report the series of new complexes $[Ln_4(BTFA)_{10}(\mu_3 - \mu_3)]$

OH)₂(H₂O)₄] (Ln = La, **1**; Eu, **2**; Tb, **3** or Gd, **4**), where the incorporation (also in Scheme 1) of the η^2 -Mode I and the μ -(O)- η^2 -bridging Mode II for the **BTFA**⁻ ligands, two μ_3 -(OH)⁻ anions, two μ_1 -coordinating H₂O and two μ_2 -bridging H₂O molecules, contributes to the formation of their same homoleptic cyclic tetranuclear framework. Moreover, in consideration of the ${}^{3}\pi$ - π^* level (~20,800 cm⁻¹) of **HBTFA** higher than the ${}^{5}D_0$ resonance level (17,286 cm⁻¹) of Eu³⁺ ion and the ${}^{5}D_4$ resonance level (20,545 cm⁻¹) of Tb³⁺ ion, effective sensitization of Eu³⁺ - or Tb³⁺ -centered characteristic luminescence is also discussed.

Through the treatment of the typical β -diketone ligand **HBTFA** with access Et₃N, the enolic β -diketonate ligand BTFA⁻ was further self-assembled with $LnCl_3 GH_2O$ (Ln = La, Eu, Tb or Gd) at a stipulated molar ratio of 5:2 in a CHCl3-MeOH solution, resulting in the formation of complexes $[Ln_4(BTFA)_{10}(\mu_3-OH)_2(H_2O)_4]$ (Ln = La, 1; Eu, 2; Tb, 3 or Gd, 4) soluble in common solvents expect water, respectively. The four complexes 1-4 were well-characterized by EA, FT-IR, ¹H NMR and ESI-MS (in Supporting information (SI)). Molecular structure of $[La_4(BTFA)_{10}(\mu_3-OH)_2(H_2O)_4] \cdot 4(H_2O) \cdot (CHCl_3) \quad (1 \cdot 4(H_2O) \cdot (CHCl_3)), as$ the representative of complexes 1-4, was obtained by single-crystal Xray diffraction analysis with crystallographic data in Tables 1-2S (SI). Complex $1.4(H_2O)(CHCl_3)$ crystallizes in the triclinic space group P-1, and the structural unit is composed of one neutral molecule $[La_4(BTFA)_{10}(\mu_3-OH)_2(H_2O)_4]$, four solvates H_2O and one solvate CHCl₃. As shown in Fig. 1a, for the host part $[La_4(BTFA)_{10}(\mu_3 - \mu_3)]$ OH)₂(H₂O)₄] lying about an inversion center, two equivalent $[La_2(BFTA)_5(\mu_3-OH)(H_2O)_2]$ moieties are bridged by two O- β -diketonate atoms (O10 and O10a) of two BTFA⁻ ligands and two O atoms (O5 and O5a) of two coordinated μ_3 -(OH)⁻ (also in Scheme 1) anions, leading to the formation of a homoleptic cyclic tetranuclear framework. In each of the two equivalent $[La_2(BFTA)_5(\mu_3-OH)(H_2O)_2]$ moieties, two La^{3+} (La1 and La2) ions with the same nine-coordinate while different coordination environments (Fig. 1b) also link by one O- β -diketonate atom (O4) of one BTFA⁻ ligand, one O- μ_3 -(OH)⁻ atom (O5) and one O atom (O2w) of one μ_2 -bridging H₂O molecule (also in Scheme 1). For the surrounding of La1 ion, besides two O atoms (O1 and O2) from one bidentate chelating (η^2 -Mode I, in Scheme 1) BTFA⁻ ligand and three O atoms (O3, O4 and O10a) from two different tri-bridging (μ -(O)- η^2 -Mode II, in Scheme 1) BTFA⁻ ligands, it saturates its coordination environment with two $O_{\mu_3}(OH)^-$ atoms (O5 and O5a), one O atom (O2w) of one μ_2 -bridging H₂O molecule and one O atom (O1w) of one μ_1 -coordinating H₂O molecule (Scheme 1). In contrast, four BTFA⁻ ligands with two in the η^2 -Mode I and the other two in the μ -(O)- η^2 -Mode II, provide seven O atoms binding to the La2 ion, while the rest are occupied by one $O-\mu_3$ -(OH)⁻ atoms (O5) and one O atom (O2w) of the

Download English Version:

https://daneshyari.com/en/article/7748376

Download Persian Version:

https://daneshyari.com/article/7748376

Daneshyari.com