Accepted Manuscript

A naphthalene diimide-based MOF with mog net featuring photochromic behaviors and high stability

Fangfang Wei, Yingxiang Ye, Wenhuan Huang, Quanjie Lin, Ziyin Li, Lizhen Liu, Shimin Chen, Zhangjing Zhang, Shengchang Xiang

霐

PII: S1387-7003(18)30329-0

DOI: doi:10.1016/j.inoche.2018.05.011

Reference: INOCHE 6973

To appear in: Inorganic Chemistry Communications

Received date: 9 April 2018 Revised date: 3 May 2018 Accepted date: 8 May 2018

Please cite this article as: Fangfang Wei, Yingxiang Ye, Wenhuan Huang, Quanjie Lin, Ziyin Li, Lizhen Liu, Shimin Chen, Zhangjing Zhang, Shengchang Xiang, A naphthalene diimide-based MOF with mog net featuring photochromic behaviors and high stability. The address for the corresponding author was captured as affiliation for all authors. Please check if appropriate. Inoche(2017), doi:10.1016/j.inoche.2018.05.011

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

A naphthalene diimide-based MOF with *mog* net featuring photochromic behaviors and high stability

Fangfang Wei, Yingxiang Ye, Wenhuan Huang, Quanjie Lin, Ziyin Li, Lizhen Liu, Shimin Chen, Zhangjing Zhang*, and Shengchang Xiang*

Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, 32 Shangsan Road, Fuzhou 350007, People's Republic of China Corresponding Authors: E-mail: zzhang@fjnu.edu.cn; scxiang@fjnu.edu.cn

ABSTRACT:

A novel photochromic metal-organic framework ($[Zn(L)_{0.5}(bpy)(H_2O)]\cdot 3.5H_2O$, **FJU-34**) based on Zn(II), carboxylate-based naphthalene diimides derivatives (H_4L) and 4,4'-bipyridine (bpy) has been prepared, which exhibits a unique doubly interpenetrated 3D open framework with a rare *mog* topological net. In addition, the excellent chemical stability and reversible photochromic performances have been observed in this compound.

Keywords: Metal-organic framework; mog topology; Photochromism; Chemical stability

Metal-organic frameworks (MOFs, also known as porous coordination polymers or porous coordination networks) are a class of crystalline porous materials that are readily fabricated through the coordination of inorganic metal ions or cluster nodes and organic bridging ligands.[1] Owing to their fascinating structures, designable framework and various potential applications (e.g., gas storage[2] and selective separation,[3] photoluminescence,[4] proton conductors,[5] and so on[6]), MOFs have received much attention in recent years. 1,4,5,8-Naphthalenediimides (NDIs)[7] are planar, chemically robust, redox-active compounds usually with high melting points, which can undergo a one-electron reduction to form stable radical anions as redox-active units for studying photoinduced electron transfer, leading to design and construction of optoelectronically active MOFs.[8] Moreover, recent research has demonstrated the effective synthesis of photochromic coordination polymers via the assembly of nonphotochromic ligands (electronic donors and acceptors, e.g. 4,4'-bipyridine) and a metal center (joint points).[9] Some photochromic MOFs have been reported based on NDI organic ligands with carboxylic acid or pyridine moieties by other groups,[10] but contain both of the carboxylate-based NDI derivatives and 4,4'-bipyridine have not been investigated as potential linkers to construct MOFs to date. In the present study, we synthesize a photochromic zinc-based MOF derived from carboxylate-based NDI (H₄L) and bpy ligands, $([Zn(L)_0 5(bpv)(H_2O)] \cdot 3.5H_2O,$ **FJU-34**) (bpy 4,4'-bipyridine, 5,5'-(1,3,6,8-tetraoxobenzo[lmn][3,8]phenanthroline-2-7-diyl)bis-1,3-benzenedicarboxylic acid), which displays a unique three-dimensional doubly interpenetrated open framework with a rare mog topology network, accompanied with the extraordinary chemical stability and reversible photochromic properties.

Download English Version:

https://daneshyari.com/en/article/7748486

Download Persian Version:

https://daneshyari.com/article/7748486

<u>Daneshyari.com</u>