Accepted Manuscript

Metal-organic framework MIL-101(Fe)-NH2 functionalized with different long-chain polyamines as drug delivery system

Miroslav Almáši, Vladimír Zeleňák, Peter Palotai, Eva Beňová, Adriana Zeleňáková

PII: S1387-7003(17)30922-X

DOI: doi:10.1016/j.inoche.2018.05.007

Reference: INOCHE 6969

To appear in: Inorganic Chemistry Communications

Received date: 29 November 2017

Revised date: 26 April 2018 Accepted date: 5 May 2018

Please cite this article as: Miroslav Almáši, Vladimír Zeleňák, Peter Palotai, Eva Beňová, Adriana Zeleňáková, Metal-organic framework MIL-101(Fe)-NH2 functionalized with different long-chain polyamines as drug delivery system. The address for the corresponding author was captured as affiliation for all authors. Please check if appropriate. Inoche(2017), doi:10.1016/j.inoche.2018.05.007

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Metal-organic framework MIL-101(Fe)-NH₂ functionalized with different longchain polyamines as drug delivery system

Miroslav Almáši¹, Vladimír Zeleňák^{1*}, Peter Palotai¹, Eva Beňová¹, Adriana Zeleňáková²

¹Department of Inorganic Chemistry, Faculty of Science, P. J. Šafárik University, Moyzesova 11, SK-041 54 Košice, Slovak Republic

²Departmen of Condensed Matter Physics, Faculty of Science, P. J. Šafárik University, Park Angelinum 9, SK-040 01 Košice, Slovak Republic

Abstract: Mesoporous metal-organic framework MIL-101(Fe)-NH₂ was prepared and post-synthetically modified with amines of different chain lengths: ethylenediamine (*en*) and 1,2-bis(3-aminopropylamino)ethane (*bap*). Three prepared samples (MIL-101(Fe)-NH₂, MIL-101(Fe)-NH₂-*en*, MIL-101(Fe)-NH₂-*bap*) were studied as carriers for drug delivery of non-steroidal antiinflamatory drug naproxen. The modification of MIL-101(Fe)-NH₂, encapsulation of the drug and stability of the carriers were monitored by the combination of different analytical techniques such as elemental analysis (EA), infrared spectroscopy (IR), thermogravimetry (TG), measurements of zeta potential (ζ), high-energy powder X-ray diffraction (HE-PXRD), ¹H-NMR spectroscopy and N₂ adsorption measurements. The naproxen release studies were performed into two simulated body fluids with different pH: the simulated gastric fluid (pH = 2) and the simulated intravenous solution (pH = 7.4). Results of naproxen release clearly showed the impact of pH and amine functional groups on the naproxen release. The number of amine groups in *en* and *bap* influenced the release process more significantly in solution with pH = 7.4 than pH = 2.

Keywords: MIL-101(Fe)-NH₂, post-synthetic modification, polyamines, naproxen, drug delivery

^{*}Coresponding author, e-mail: vladimir.zelenak@upjs.sk

Download English Version:

https://daneshyari.com/en/article/7748496

Download Persian Version:

https://daneshyari.com/article/7748496

<u>Daneshyari.com</u>