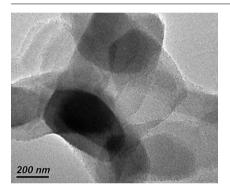
FISEVIER

Contents lists available at ScienceDirect

Inorganic Chemistry Communications

journal homepage: www.elsevier.com/locate/inoche

Short communication


Two-dimensional (2D) amorphous antimony (III) trisulfide nanosheets: Synthesis, photoelectronic property and their transformation to crystalline 1D micro/nanorods

Junli Wang*, Yajie Qiao, Tingting Wang, Hongsong Yu, Ying Feng, Linjie Li

School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, PR China

GRAPHICAL ABSTRACT

ARTICLE INFO

Keywords: 2D materials Sb₂S₃ Nanosheets Amorphous semiconductors Photoresponse Phase transformation

ABSTRACT

Two-dimensional (2D) crystal materials have attracted intensive research interest because of their multifunctionality. However, the 2D nanosheets (NSs) of amorphous semiconductors are far less explored. We demonstrate here the colloidal synthesis of 2D amorphous antimony (III) trisulfide (Sb_2S_3) NSs in the mixture solution of different long-chain primary amines. These organic amines act as soft template to define the 2D growth through the coordination of metal cations with amine group. The resultant NSs exhibit distinct 2D characteristic with the thickness of 2–4 nm and the length \times width dimensions ranging from several hundreds of nanometer to one to several micrometers. Their photoelectronic property has been evaluated in the indium tin oxide (ITO)/Sb₂S₃/ITO model device, showing fast temporal photoresponse and photoswitch ability. Through a solid-state thermal-annealing process, the amorphous NSs can be converted to 1D crystalline micro/nanorods, which is due to the high structural anisotropy of crystal phase (stibnite). TG-DSC thermal analysis reveals that the amorphous-crystalline phase transformation is companied by the desorption and/or decomposition of organic surfactant molecules and the S loss.

Antimony (III) trisulfide (Sb_2S_3) has been actively studied in thinfilm solar cells [1–5], photodetectors [6,7], lithium/sodium ion batteries [8–10], and photocatalysis and other applications [11,12]. In crystallography, Sb_2S_3 displays two forms of amorphous (a- Sb_2S_3) and

crystalline (c- Sb_2S_3) states: the former is usually prepared at low temperatures while the latter obtained at relatively high temperatures; they show different structural, optical, and (photo)electronic properties [1,4,8,13–16]. As an amorphous semiconductor, a- Sb_2S_3 is structurally

E-mail address: wangjl@ujs.edu.cn (J. Wang).

^{*} Corresponding author.

isotropic, showing the long-range disorder (short-range order) structure [14,17]. Consequently, the morphology of a-Sb₂S₃ is easily dependent on its growth environment. For example, the thin films of a-Sb₂S₃ could be deposited on planar substrates (e.g., quartz glass or ITO/glass) [4,5,11,13,15,17]; as far as individual particles are concerned, the spherical grains of a-Sb₂S₃ (in powder samples or thin films) [18,19] were produced from solution-phase synthesis due to the thermodynamic energy minimization. In the past decade, the two-dimensional (2D) materials, such as graphene, MoS₂, g-C₃N₄, and M(OH)_x, have been intensively investigated because of their various functions and applications [20–23]. To our best of knowledge, however, the 2D solids of a-Sb₂S₃ have not been reported.

Amorphous semiconductors with the 2D feature, such as ultrathin nanosheets (NSs), may show great potential in (photo)electronic devices and energy applications. Amorphous a-Sb₂S₃, compared to its crystalline phase, has been found to show better electrochemical properties in rechargeable lithium batteries [8], such as high energy density, long cyclability and good initial Coulombic efficiency. These electrochemical properties would be probably further improved when ultrathin a-Sb₂S₃ NSs are accessed. Moreover, it is believed that the 2D NSs of amorphous semiconductors can exhibit specific (photo)electronic performances that are different from 2D crystal materials when used in the (photo)electronic devices based on individual NSs [20,21]. As such, the studies on the synthesis and (photo)electronic properties of 2D amorphous semiconductors are of much interest and scientific significance.

Herein, we introduced the synthesis of 2D amorphous $\mathrm{Sb}_2\mathrm{S}_3$ NSs via a simple colloidal chemistry method. Organic long-chain primary amines, oleylamine (OLA) mixed with n-dodecylamine (DA) or n-octylamine (OA), were employed as soft template [24,25] to assist the 2D formation of amorphous NSs. Their morphology, dimensional sizes, structure and chemical compositions were characterized in detail; their photoelectronic response behaviour was evaluated as active material in the indium tin oxide (ITO)/Sb₂S₃/ITO device structure. Moreover, these 2D amorphous $\mathrm{Sb}_2\mathrm{S}_3$ NSs can be transformed to 1D crystalline micro/nanorods by simple solid-state thermal-annealing, during which it is considered that the 2D to 1D morphology transition is driven by the high anisotropy of crystal structure of c-Sb₂S₃ (stibnite).

Amorphous a-Sb₂S₃ NSs were synthesized at relatively low temperatures through a colloidal chemistry method we reported recently [26]. The mixture of oleylamine (OLA) with n-dodecylamine (DA, n-C₁₂H₂₅NH₂) or n-octylamine (OA, n-C₈H₁₇NH₂) were employed as colloidal reaction solution (see details of experiments in the Supplementary material). The as-prepared sample was characterized by XRD pattern (Fig. 1a). No sharp peaks were detected, indicating the lack of long range order and the amorphous (non-crystalline) characteristic of Sb₂S₃ sample. Both the broadened peaks and the orange colour are indicative of the yield of amorphous Sb₂S₃ (a-Sb₂S₃) [15,16]. By simple thermal annealing, the orange a-Sb₂S₃ sample can transfer to crystalline Sb₂S₃ (c-Sb₂S₃), which has a dark or even black colour and stibnite structure (Fig. 1a, discussed in detail later). SEM and TEM studies (Fig. 1b-e) show that the a-Sb₂S₃ products display a two-dimensional (2D) sheet-like morphology. As revealed by EDS analysis, these a-Sb₂S₃ NSs have a Sb/S composition close to the theoretical stoichiometry of 2:3 (Fig. S1). The electron diffraction (ED) and HRTEM results are shown in Fig. 1f, in which only diffraction halo is observed and no lattice fringes are detectable, further verifying the non-crystalline nature of a-Sb₂S₃ NSs.

From the TEM images, it is seen that the length and width of a-Sb₂S₃ NSs are larger than the thickness and they both have a relatively large size, approximately ranging from several hundreds of nanometers to one to several micrometers. The NS thickness was determined by AFM imaging. As displayed in Fig. 2, these NSs show 2–4 nm in thickness. The thickness is much thinner than the length and width, unambiguously confirming the 2D geometric characteristics of a-Sb₂S₃ NSs.

XPS was used to characterize the chemical composition and elemental valent states of a-Sb₂S₃ NSs. In the XPS survey spectrum (Fig. 3a), only Sb, S and C is detected, indicating the high purity of sample (C signal comes from the C standard reference with 284.4 eV). From the high-resolution Sb 3d and S 2p spectra displayed in Fig. 3b and c, it is measured that Sb 3d_{5/2} and 3d_{3/2} have the binding energies of 529.3 and 538.7 eV, respectively, in good agreement with the trivalent Sb 3d core values from Sb—S bonds and precluding Sb—O species [4,26,27]; the binding energies S 2p_{3/2} and 2p_{1/2} correspond to 161.1 and 162.2 eV. As is known, XPS is a powerful tool to probe the surface chemical composition. For the a-Sb₂S₃ NSs, the Sb/S molar ration obtained from XPS results is very close to 2:3 (inset of Fig. 3a), which is consistent with the composition of bulk a-Sb₂S₃.

Organic long-chain primary amines, such as oleylamine (OLA), octadecylamine (ODA, n-C₁₈H₃₇NH₂), n-dodecylamine (DA, n-C₁₂H₂₅NH₂), and n-octylamine (OA, n-C₈H₁₇NH₂), have been often used to prepare 2D crystal materials [24,25,28]. As proposed in the literature, all these amines are able to serve as soft templates through the interaction between metal cations and -NH2 groups and yield the ultrathin sheet-like morphology, like the formation of 2D CdSe NSs [24], ZnS nanobelts [25], and In₂S₃ NSs [28]. Similarly, the production of amorphous a-Sb₂S₃ NSs can be attributed to the soft template effect of mixed long-chain OLA and DA. As an amorphous (non-crystalline) solid, a-Sb₂S₃ lacks the long-range order in the atomic arrangements and is free of the limit of structural anisotropy, unlike many crystalline solids. The shape of a-Sb₂S₃ individual nanoparticles is highly related to their external synthetic conditions and formation mechanisms. Accordingly, the 2D template effect derived from the metal cations and -NH2 groups is capable of well defining the growth and formation of amorphous Sb₂S₃ NSs.

These a-Sb₂S₃ NSs obtained from the mixed solution of organic longchain amines could be readily dispersed in nonpolar solvents, such as nhexane, toluene and chloroform, and made into thin films on the ITOcoated glass substrate by the drop-cast method. Accordingly, a pristine optoelectronic device with the typical electrode/materials/electrode (electrode: conductive ITO or metal thin film) sandwiched structure [26,28] was fabricated for measuring the photoresponse performance of a-Sb₂S₃ NSs. Fig. 4a shows the I-V curve of such a device under both the dark and visible-light irradiation conditions. The linear characteristic of I-V curves indicates the Ohmic contact nature between the ITO electrode and the a-Sb₂S₃ NS film. Compared to the dark current, the photocurrent is obviously increased when the ITO/a-Sb₂S₃ NSs/ITO device is exposed to light. Meanwhile, these 2D a-Sb₂S₃ NSs show good temporal photoresponse ability and photoswitch characteristic with the light on/off, as confirmed in the *I-t* curve measurement (Fig. 4b). Such a photoresponse property suggests that these amorphous Sb₂S₃ NSs may be applied as a component material in photodetection and solar cells [1–7,16], if their photostability is further improved under light illumination.

TG-DSC thermal analysis technique was employed to determine the phase change process of as-prepared a-Sb₂S₃ NSs. As shown in Fig. 5, a fast weight loss starts at the temperature 226.5 °C with a weight loss ratio about 28% in the TG curve within the temperature range of 50–400 °C, while the DSC process shows an obvious endothermic peak centered at 239.7 °C. After such an annealing process in TG-DSC analysis or a similar annealing reaction performed in a conventional tube furnace, crystalline products were produced, which crystalize in the stibnite structure of Sb₂S₃ [1,4-6,8,13,15,29], as verified by XRD in Fig. 1a. Clearly, the amorphous a-Sb₂S₃ NSs undergo a crystallization process during the thermal annealing. According to the TG-DSC curve, the crystallization begins at 226.5 °C and the fastest rate of weight loss takes place at 239.7 °C. The measured amorphous-crystalline transition temperature (226.5 °C) is consistent with many previous reports wherein c-Sb₂S₃ thin films or nanostructures of good crystallinity were usually obtained at 200-300 °C or higher preparation temperatures via the solid-state annealing or reaction [1,4-7,13,15,16,19,29,30]. There

Download English Version:

https://daneshyari.com/en/article/7748522

Download Persian Version:

https://daneshyari.com/article/7748522

<u>Daneshyari.com</u>