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In recent papers the finite Eshelby tensors for a concentrically placed spherical inclusion in a finite
spherical domain have been computed and applied to numerous micromechanical problems. The present
work is the extension of the computation of finite Eshelby tensors to general inclusions that are
axisymmetric with respect to enclosing spherical domain. The problem of finding the finite Eshelby
tensors is transformed into the integral equation. It is shown in the paper that the integral equation has
a unique solution. Existence of the solution is proved by exploiting the symmetry of the problem which
induce invariant subspaces of the integral equation. In the particular case for a excentrically placed
spherical inclusion the problem is explicitly solved. Using computer algebra the solution is found in
a closed form up to the second order.
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1. Introduction

Many fundamental problems of the micromechanics require
solution of the Eshelby’s homogeneous inclusion problem. In
engineering applications an inclusion is embedded in a finite
domain. Often, there are several inclusions at a high concentration
ratio what causes interaction between them. For such problems the
dilute suspension model, which is based on a single inclusion
within an infinite matrix, is not valid. A more refined theory is
required which captures the boundary effect and allows several
inclusions within the representative volume (RVE). As established
by Li et al. (2007-b), this can be achieved using the notion of the
finite Eshelby tensors. They can capture the boundary effect of
a RVE and thus the size effect of the different phases.

Inclusion problems for a finite domain have been considered
before the seminal paper of Li et al. (2007-a), see e.g. (Kinoshita and
Mura, 1984). A first partial solution for a spherical inclusion in
a finite spherical domain has been found by Luo and Weng (1987).
However, the explicit expressions for the Eshelby tensors were not
given. They first appeared in Li et al. (2007-a). Here the Eshelby
tensors were obtained for the Dirichlet and Neumann boundary
conditions imposed on the boundary of the domain. They were
named as the Dirichlet-Eshelby and Neumann-Eshelby tensors.
Recently, the notion of the finite Eshelby tensors was further
generalized to the composite Eshelby tensors, see Sauer et al.
(2008). The finite Eshelby tensors were successfully applied in the
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three-phase model and the improved Mori-Tanaka theory, see e.g.
(Nemat-Nasser and Hori, 1999; Li and Wang, 2008).

So far, in all contributions pertaining to the finite Eshelby
tensors, it was assumed that the spherical inclusion is placed
concentrically within the spherical RVE. This assumption is
removed in the present paper and the inclusion is allowed to be
placed axisymetrically with respect to the spherical domain. A
particular example of such case is the excentrically placed spherical
inclusion. In the first part of the paper the problem of finding the
finite Eshelby tensors is considered from the mathematical point of
view. Using the well known results from the potential theory the
problem is transformed into the integral equation. The unique
existence of the problem is proved in three steps. First it is proved
that if solution exists, it is unique. The next step is that the integral
operator has closed range. Up to this stage presentation is rather
standard with the exception that the integral equation is the forth
order tensorial equation. The third step deviates and shows that the
infinite Eshelby tensor for the inclusion is in the range of the
integral equation. This is shown using the symmetry properties of
the inclusion and the integral operator. In fact it is proved that the
integral equation has finite dimensional invariant subspaces that
form a dense subset in an appropriate solution space. The deviation
from the standard approach (Dahlberg et al., 1988) is necessary as it
is not clear whether the singularity of the integral operator can be
canceled by subtracting form it an appropriate adjoint operator. In
the case of the Lamé system the transpose of the integral operator
cancels it out.

In the second part of the paper the finite Eshelby tensors are
computed for the excentrically placed spherical inclusion. The


mailto:george.mejak@fmf.uni-lj.si
www.sciencedirect.com/science/journal/09977538
http://www.elsevier.com/locate/ejmsol
http://dx.doi.org/10.1016/j.euromechsol.2011.02.001
http://dx.doi.org/10.1016/j.euromechsol.2011.02.001
http://dx.doi.org/10.1016/j.euromechsol.2011.02.001

478 G. Mejak / European Journal of Mechanics A/Solids 30 (2011) 477—490

solution is found by means of the power series expansion of the
infinite Eshelby tensor with respect to the excentricity parameter.
Finite dimensional invariant subspaces are explicitly constructed.
Some illustrative examples which show convergence of the power
series expansion and effects of the excentricy are given. Results are
given only for the exterior solution. Using formulae in the paper,
the interior solution is easily obtained.

The paper is concluded with a list of possible generalizations. No
concrete applications of the new finite Eshelby tensors are given.
They will appear in a separate paper. Presentation is mostly
restricted to the Dirichlet-Eshelby tensor. Similar theoretical results
hold for the Neumann-Eshelby tensor.

2. Notation preliminaries

Throughout the paper tensorial notation is used. Vectors,
second, third and fourth order tensors are denoted by a, a, A and
A. In component notation with respect to the Cartesian basis
vectors e; they are a = a;e;, a = agje;®ej, A = Aje;®e;j®ey
and A = Aje;®ej®e,®e;. Here and in the following the
summation convention over the repeated indices is used. A generic
notation for a tensor filed of any order is t.

The identity second order tensor is denoted by i and the fourth
order identity tensor by I.The fourth order symmetric unit tensor is

1
I°:= 5(51‘@;‘1 + 5il(5jk>§i®§j®§k®§1

A set of orthogonal second order tensors is denoted by O(3).
Symmetric tensor product of two vectors a and b is denoted by sym
(a®b) = %(g ®b +b ® a). Dot product of two tensors or single
contraction is denoted by a single dot, for example, dot product of
a vector a and a third order tensor A is denoted by a-A and is
definedbya-A = a;Ajire j®e . Note the order of tensors in the dot
product. Thus A-a = Ajace;®e;. Double contraction is denoted
by a colon, triple by a dot and column and quadruple contraction
by a double colon. For example, A : B = AjjBymnei®€j®e®en,
A-:B = AyBjxand A :: B = A,]leUk, Symmetrization ofa tensort
with respect to indices i and j is denoted by symyt. In particular
symp3A = Aje; ®sym(e;®ey). Transposition of a tensor t with
respect to 1nd1ces i and j is denoted by tran;t. Thus
tranygg A = Ajye®e ®e®e;. If tran;t = t, we say that tisi < j
symmetric. Symmetric fourth order tensors have 1 < 2 and 3 < 4
symmetry. A symmetric part of a second order tensor a is denoted
by sym a. B

Gradient of a tensor filed t = t(X) is given by grad t = at/aX. In
Cartesian coordinates x; we have grad t = 9t/ox; ®e;. Divergence of
a tensor field is given as t = t: i. For example, a = a;;e;where
the index j after the comma denotes partial differentiation with
respect to x;. Finally, let QcR3 be a domain with the boundary T’
with the exterior normal n. For a tensor filed t defined in a neigh-
borhood of PeI" we denote

t. = lim

rao+t(P$tﬂ)’ (1)

if the limits exists. Thus t, is a limit from the interior and t_ from
the exterior. Moreover, we denote Q_ = R3\Q.

3. Formulation of the problem

Let Qc R? be a domain and ©; an inclusion within Q. A constant
eigenstrain

* IXGQi

€ X = { :XeQm = Q\Q;

[K=21Kz

is prescribed inside the inclusion. Thus € *(X) = € "x(Q;)(X) where
x(Q)(X) is the characteristic function of Q. An equilibrium
displacement vector field u with appropriate boundary conditions
is sought such that

divC:grad u = divC: € (X), ()

where C is a constant elasticity tensor. Since the eigenstrain is
discontinuous across the boundary of the inclusion, the above
partial differential equation (PDE) should be understood in the
distributional sense. It is required that the displacement field u and
the traction t = (gradu — € “(X)): C -n of the total strain field
gradu — € *(X), are continuous across the inclusion boundary T}.
Here n is the outward normal to 9Q;. Thus

E ‘+ = H ‘—On anv
(gradu — €”): C-n|, = gradu : C -n|_on dQ;. (3)
PDE (2) with (3) and appropriate boundary conditions on the
boundary 9Q of Q constitutes a transmission boundary value
problem.
It follows form (3) that the Somigliana identity applies. Thus

0g ou
/—;gi +/§®Q:E:WdS(Y)
a ;
0g
— /ﬁ:g:_ nds(Y), (4)

:Q
where g = g (X,Y) is the Green function and n is the out-

ward normal to 9Q.

Although more general boundary conditions could be imposed,
see Sauer et al. (2008), only two types of the boundary conditions
(BC) are considered, Dirichlet BC

u® = €% (X-0)onoQ (5)
and Neumann BC

t% = 6% n onoQ (6)
Here ¢ 0 and go are the prescribed constant background strain and
stress fields. In (5) O is an arbitrary point in R3. In the case of the
Neumann BC we define u® = (C~': g% (X -0). Due to the
prescribed eigenstrain the solution is sought in the formu = u® +
ud where ud is the unknown disturbance displacement field.
Obviously it solves (2) with the homogeneous boundary conditions
on 9Q. Equation (2) with Dirichlet or Neumann BC is termed
Dirichlet-Eshelby or Neumann-Eshelby boundary value problem
(BVP). Using (4) it follows then that in the case of Dirichlet BC the
disturbance displacement is given by

/g®n:

0g

udx) = /ay cdQ(y
Q;

ey

eddsy)  (7)
and in the case of Neumann BC by

d 08 g d
g(X):/aY CdQ():i—/Wzgzg ®ndS(Y) (8)
Q; 0Q
Since (2) is a linear equation and is linear in g*, their solutions
depend linearly upon ¢ *. Moreover a solution space of a BVP with

zero boundary data is also linear. Therefore u9 is linear in € * and
thus a
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