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a b s t r a c t

In recent papers the finite Eshelby tensors for a concentrically placed spherical inclusion in a finite
spherical domain have been computed and applied to numerous micromechanical problems. The present
work is the extension of the computation of finite Eshelby tensors to general inclusions that are
axisymmetric with respect to enclosing spherical domain. The problem of finding the finite Eshelby
tensors is transformed into the integral equation. It is shown in the paper that the integral equation has
a unique solution. Existence of the solution is proved by exploiting the symmetry of the problem which
induce invariant subspaces of the integral equation. In the particular case for a excentrically placed
spherical inclusion the problem is explicitly solved. Using computer algebra the solution is found in
a closed form up to the second order.

� 2011 Elsevier Masson SAS. All rights reserved.

1. Introduction

Many fundamental problems of the micromechanics require
solution of the Eshelby’s homogeneous inclusion problem. In
engineering applications an inclusion is embedded in a finite
domain. Often, there are several inclusions at a high concentration
ratio what causes interaction between them. For such problems the
dilute suspension model, which is based on a single inclusion
within an infinite matrix, is not valid. A more refined theory is
required which captures the boundary effect and allows several
inclusions within the representative volume (RVE). As established
by Li et al. (2007-b), this can be achieved using the notion of the
finite Eshelby tensors. They can capture the boundary effect of
a RVE and thus the size effect of the different phases.

Inclusion problems for a finite domain have been considered
before the seminal paper of Li et al. (2007-a), see e.g. (Kinoshita and
Mura, 1984). A first partial solution for a spherical inclusion in
a finite spherical domain has been found by Luo and Weng (1987).
However, the explicit expressions for the Eshelby tensors were not
given. They first appeared in Li et al. (2007-a). Here the Eshelby
tensors were obtained for the Dirichlet and Neumann boundary
conditions imposed on the boundary of the domain. They were
named as the Dirichlet-Eshelby and Neumann-Eshelby tensors.
Recently, the notion of the finite Eshelby tensors was further
generalized to the composite Eshelby tensors, see Sauer et al.
(2008). The finite Eshelby tensors were successfully applied in the

three-phase model and the improved Mori-Tanaka theory, see e.g.
(Nemat-Nasser and Hori, 1999; Li and Wang, 2008).

So far, in all contributions pertaining to the finite Eshelby
tensors, it was assumed that the spherical inclusion is placed
concentrically within the spherical RVE. This assumption is
removed in the present paper and the inclusion is allowed to be
placed axisymetrically with respect to the spherical domain. A
particular example of such case is the excentrically placed spherical
inclusion. In the first part of the paper the problem of finding the
finite Eshelby tensors is considered from the mathematical point of
view. Using the well known results from the potential theory the
problem is transformed into the integral equation. The unique
existence of the problem is proved in three steps. First it is proved
that if solution exists, it is unique. The next step is that the integral
operator has closed range. Up to this stage presentation is rather
standard with the exception that the integral equation is the forth
order tensorial equation. The third step deviates and shows that the
infinite Eshelby tensor for the inclusion is in the range of the
integral equation. This is shown using the symmetry properties of
the inclusion and the integral operator. In fact it is proved that the
integral equation has finite dimensional invariant subspaces that
form a dense subset in an appropriate solution space. The deviation
from the standard approach (Dahlberg et al., 1988) is necessary as it
is not clear whether the singularity of the integral operator can be
canceled by subtracting form it an appropriate adjoint operator. In
the case of the Lamé system the transpose of the integral operator
cancels it out.

In the second part of the paper the finite Eshelby tensors are
computed for the excentrically placed spherical inclusion. TheE-mail address: george.mejak@fmf.uni-lj.si.
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solution is found by means of the power series expansion of the
infinite Eshelby tensor with respect to the excentricity parameter.
Finite dimensional invariant subspaces are explicitly constructed.
Some illustrative examples which show convergence of the power
series expansion and effects of the excentricy are given. Results are
given only for the exterior solution. Using formulae in the paper,
the interior solution is easily obtained.

The paper is concludedwith a list of possible generalizations. No
concrete applications of the new finite Eshelby tensors are given.
They will appear in a separate paper. Presentation is mostly
restricted to the Dirichlet-Eshelby tensor. Similar theoretical results
hold for the Neumann-Eshelby tensor.

2. Notation preliminaries

Throughout the paper tensorial notation is used. Vectors,
second, third and fourth order tensors are denoted by a , a¼ , A and
A¼ . In component notation with respect to the Cartesian basis
vectors e i they are a ¼ aie i, a¼ ¼ aije i5e j, A ¼ Aijke i5e j5e k
and A¼ ¼ Aijkle i5e j5e k5e l. Here and in the following the
summation convention over the repeated indices is used. A generic
notation for a tensor filed of any order is t.

The identity second order tensor is denoted by i¼ and the fourth
order identity tensor by I¼ . The fourth order symmetric unit tensor is

I¼
s :¼ 1

2

�
dikdjl þ dildjk

�
e i5e j5e k5e l

A set of orthogonal second order tensors is denoted by Oð3Þ.
Symmetric tensor product of two vectors a and b is denoted by sym
ða5 b Þ ¼ 1

2ða5 b þ b5 a Þ. Dot product of two tensors or single
contraction is denoted by a single dot, for example, dot product of
a vector a and a third order tensor A is denoted by a $A and is
defined by a $A ¼ aiAijke j5e k. Note the order of tensors in the dot
product. Thus A $ a ¼ Aijkake i5e j. Double contraction is denoted
by a colon, triple by a dot and column and quadruple contraction
by a double colon. For example, A¼ : B¼ ¼ AijklBklmne i5e j5e m5e n,
A $ : B ¼ AijkBijk and A¼ :: B¼ ¼ AijklBijkl. Symmetrization of a tensor t
with respect to indices i and j is denoted by symijt. In particular
sym23 A ¼ Aijke i5symðe j5e kÞ. Transposition of a tensor t with
respect to indices i and j is denoted by tranijt. Thus
tran24 A¼ ¼ Aijkle i5e l5e k5e j. If tranijt ¼ t, we say that t is i4 j
symmetric. Symmetric fourth order tensors have 142 and 34 4
symmetry. A symmetric part of a second order tensor a¼ is denoted
by sym a¼ .

Gradient of a tensor filed t ¼ tðXÞ is given by grad t ¼ vt=vX. In
Cartesian coordinates xiwe have grad t ¼ vt=vxi5e i. Divergence of
a tensor field is given as t ¼ t : i¼ . For example, a¼ ¼ aij;je iwhere
the index j after the comma denotes partial differentiation with
respect to xj. Finally, let U3R3 be a domain with the boundary G
with the exterior normal n . For a tensor filed t defined in a neigh-
borhood of P˛G we denote

t� ¼ lim
t/0þ

tðPHt n Þ; (1)

if the limits exists. Thus tþ is a limit from the interior and t� from
the exterior. Moreover, we denote U� ¼ R3yU.

3. Formulation of the problem

Let U3R3 be a domain and Ui an inclusion within U. A constant
eigenstrain

e¼
*ðXÞ ¼

� e¼
* : X˛Ui

0¼ : X˛Um ¼ UyUi

is prescribed inside the inclusion. Thus e¼
*ðXÞ ¼ e¼

*cðUiÞðXÞwhere
cðUiÞðXÞ is the characteristic function of Ui. An equilibrium
displacement vector field u with appropriate boundary conditions
is sought such that

div C¼ : grad u ¼ div C¼ : e¼
*ðXÞ; (2)

where C¼ is a constant elasticity tensor. Since the eigenstrain is
discontinuous across the boundary of the inclusion, the above
partial differential equation (PDE) should be understood in the
distributional sense. It is required that the displacement field u and
the traction t ¼ ðgradu � e¼

*ðXÞÞ : C¼ $n of the total strain field
gradu � e¼

*ðXÞ, are continuous across the inclusion boundary Gi.
Here n is the outward normal to vUi. Thus

u jþ ¼ u j�on vUi;�
gradu � e¼

*
�
: C¼ $n jþ ¼ gradu : C¼ $n j�on vUi:

(3)

PDE (2) with (3) and appropriate boundary conditions on the
boundary vU of U constitutes a transmission boundary value
problem.

It follows form (3) that the Somigliana identity applies. Thus

u ðXÞ ¼
Z
Ui

vg
¼

vY
: C¼ : e¼

*dUðYÞ þ
Z
vU

g
¼
5n : C¼ :

vu
vY

dSðYÞ

�
Z
vU

vg
¼

vY
: C¼ : u5ndSðYÞ; (4)

where g¼ ¼ g¼ ðX;YÞ is the Green function and n is the out-

ward normal to vU.
Although more general boundary conditions could be imposed,

see Sauer et al. (2008), only two types of the boundary conditions
(BC) are considered, Dirichlet BC

u 0 ¼ e¼
0$ðX � OÞ on vU (5)

and Neumann BC

t 0 ¼ s¼
0$n on vU (6)

Here e¼
0 and s¼

0 are the prescribed constant background strain and
stress fields. In (5) O is an arbitrary point in R3. In the case of the
Neumann BC we define u0 ¼ ðC¼

�1 : s¼
0Þ$ðX � 0Þ. Due to the

prescribed eigenstrain the solution is sought in the form u ¼ u0 þ
u d where u d is the unknown disturbance displacement field.
Obviously it solves (2) with the homogeneous boundary conditions
on vU. Equation (2) with Dirichlet or Neumann BC is termed
Dirichlet-Eshelby or Neumann-Eshelby boundary value problem
(BVP). Using (4) it follows then that in the case of Dirichlet BC the
disturbance displacement is given by

u dðXÞ ¼
Z
Ui

v g
¼

vY
: C¼ dUðYÞ : e¼

* þ
Z
vU

g
¼
5n : C¼ : e¼

ddSðYÞ (7)

and in the case of Neumann BC by

u dðXÞ ¼
Z
Ui

v g
¼

vY
: C¼ dUðYÞ : e¼

* �
Z
vU

v g
¼

vY
: C¼ : u d5ndSðYÞ (8)

Since (2) is a linear equation and is linear in e¼
*, their solutions

depend linearly upon e¼
*. Moreover a solution space of a BVP with

zero boundary data is also linear. Therefore u d is linear in e¼
* and

thus
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