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a b s t r a c t

A size-dependent Kirchhoff micro-plate model is developed based on the strain gradient elasticity
theory. The model contains three material length scale parameters, which may effectively capture the
size effect. The model can also degenerate into the modified couple stress plate model or the classical
plate model, if two or all of the material length scale parameters are taken to be zero. The static bending,
instability and free vibration problems of a rectangular micro-plate with all edges simple supported are
carried out to illustrate the applicability of the present size-dependent model. The results are compared
with the reduced models. The present model can predict prominent size-dependent normalized stiffness,
buckling load, and natural frequency with the reduction of structural size, especially when the plate
thickness is on the same order of the material length scale parameter.

� 2011 Elsevier Masson SAS. All rights reserved.

1. Introduction

Recent technological developments have opened up promising
research opportunities and engineering priorities in micro-plate
based micromechanics (Batra et al., 2007), in which the plate thick-
ness is typically on the order of microns or sub-microns. The size-
dependent behavior of micron-scale structures has been proven
experimentally in metals (Nix, 1989; Fleck et al., 1994; Poole et al.,
1996), geomaterials and brittle materials (Vardoulakis et al., 1998),
polymers (Lam and Chong, 1999; Lam et al., 2003; McFarland and
Colton, 2005) and polysilicon (Chasiotis and Knauss, 2003). The
classical theory of linear elasticity is characterized by the local char-
acter of stress without any internal (material) length scale, which is
inadequate for predicting the mechanical behavior of small material
structures, whose behavior is characterized by non-local stresses and
the existence of an internal length scale.

Higher-order continuum theories have recently raised the interest
of many scientists (Batra, 1987; Fleck et al., 1994; Vardoulakis et al.,
1998; Lam et al., 2003; Papargyri-Beskou et al., 2003, 2010; Reddy,

2007a; Papargyri-Beskou and Beskos, 2008; Kong et al., 2009; Wang
et al., 2010), inwhich strain gradient or non-local terms are involved
and additional material length scale parameters are consequently
introduced to complement the classical material constants. A review
of the high order elasticity theories can be found in the works of
(Vardoulakis and Sulem, 1995; Exadaktylos and Vardoulakis, 2001;
Papargyri-Beskou and Beskos, 2008).

Based on the aforementioned higher-order continuum theories,
several micro-plate models have been developed by many
researchers based on micropolar theory (Ariman, 1968a,b); the
simplest version of the simplified form-II theory of strain gradient
linear elasticity due to Mindlin (1964) (Papargyri-Beskou and
Beskos, 2009; Vavva et al., 2009; Papargyri-Beskou et al., 2010);
gradient elastic theory (Lazopoulos, 2004, 2009); and couple stress
theory (Hoffman, 1964; Ellis and Smith, 1967; Tsiatas, 2009).
Ariman (1968a,b) studied the circular micropolar plate and dis-
cussed some problems in the model. Lazopoulos (2004) established
a strain gradient elasticity theory of plates, based on the gradient
elasticity theory proposed by Altan and Aifantis (1997) which can
be traced back to Mindlin (1965). The theory is applied to the study
of the buckling behavior of a long rectangular plate under uniaxial
compression and small lateral load, supported on a rigid plane
foundation. Recently, Lazopoulos (2009) studied the bending of
strain gradient elastic thin plates, adopting a simple version of
Mindlin’s linear theory of elasticity with microstructure, in which
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the intrinsic bulk length g and the directional surface energy length
lk are introduced to characterize the strain gradient in addition to
the classical Lame constants. Tsiatas (2009) presented a micro
Kirchhoff plate model for the static analysis of isotropic micro-
plates with arbitrary shape based on the simplified couple stress
theory of Yang et al. (2002) containing only one material length
scale parameter, rendering a relatively simple formulation of the
size-dependent plate model. Vavva et al. (2009) studied the
velocity dispersion curves of guided modes propagating in an
isotropic micro-plate based on the simplified Mindlin (1964, 1965)
form-II gradient elastic theory. Very recently, Papargyri-Beskou
et al. (2010) studied the gradient elastic flexural Kirchhoff plates
under static loading via variational method, and derived the exact
boundary condition for any plate form and showed validated the
effectiveness of the approximate boundary conditions proposed by
Papargyri-Beskou and Beskos (2008).

Shu and Fleck (1998) pointed out that the couple stress theory
(Fleck and Hutchinson, 1993), which is a general form of the modi-
fied couple stress theory (Yang et al., 2002) used by Tsiatas (2009) to
predict the size effect ofmicro-plate, usually under-predicts the size
effect because the couple stress theory only employs the rotation
gradient and neglects the other gradients (e.g. stretch gradient).
Therefore, to more effectively account for the size effect, a general
strain gradient theory, incorporating not only the rotation gradient
but also stretch gradient or other gradients, should be introduced.

Among the higher-order continuum theories, the strain gradient
elasticity theory proposed by Lam et al. (2003) was successfully
applied to predict the size-dependent properties for small scale
structures. Three material length scale parameters are introduced
to characterize the dilatation gradient tensor, the deviatoric stretch
gradient tensor, and the symmetric rotation gradient tensor,
respectively. Through work conjugation, the higher-order stress
tensors are related to the higher-order deformation metrics. The
theory has been used to analyze the static and dynamic problems of
micro scale BernoullieEuler beam (Kong et al., 2009) and Timo-
shenko beam (Wang et al., 2010). Moreover, it should be noted that
strain gradient elasticity theory of Lam et al. (2003) can degenerate
into the modified couple stress theory of Yang et al. (2002) by
setting two of the three material length scale parameters to zero;
thus, the strain gradient elasticity theory (Lam et al., 2003) may be
regarded as a much wider extension of the modified couple stress
theory (Yang et al., 2002).

Theobjectiveof thiswork is todevelopa size-dependentKirchhoff
plate model based on the strain gradient elasticity theory (Lam et al.,
2003). In Section 2, the governing equation of the size-dependent
Kirchhoff micro-plate is derived. In subsequent Sections 3e5, the
size-dependenceof thenormalized stiffness, critical load, andnatural
frequency for the simple supportedplate aredescribedanddiscussed.
Conclusions are summarized in Section 6.

2. Governing equations of size-dependent flexural plate

Based on the higher-order stress theory (Mindlin, 1965), Lam
et al. (2003) proposed the strain gradient elasticity theory, in
which a new additional equilibrium equation governing the
behavior of higher-order stresses, the equilibrium of moments of
couples, is introduced in addition to the classical equilibrium
equations of forces and moments. There are three material length
scale parameters for isotropic linear elastic materials.

According to the theory, the total deformation energy density is
a function of the symmetric strain tensor, the dilatation gradient
vector, the deviatoric stretch gradient tensor and the symmetric
rotation gradient tensor. The strain energy U in a deformed
isotropic linear elastic material occupying region J (with a volume
element V) is given by

U ¼ 1
2

Z
V

u dJ ¼ 1
2

ZZZ
V
u dxdydz (1)

in which u is the strain energy density, defined by

u ¼ sij3ij þ pigi þ sð1Þijk h
ð1Þ
ijk þms

ijc
s
ij (2)

For the indices (subscripts) throughout this paper, the repeated
indices denote summation from 1 to 3. And the deformation
measures, i.e., the strain tensor, 3ij, the dilatation gradient tensor, gi,
the deviatoric stretch gradient tensor, hijk(1), and the symmetric
rotation gradient tensor, cijs, are defined by

3ij ¼
1
2
�
vjui þ viuj

�
(3)

hð1Þijk ¼ hsijk �
1
5

�
dijh

s
mmk þ djkh

s
mmi þ dkih

s
mmj

�
(4)

gi ¼ vi3mm (5)

and

csij ¼
1
4
�
eipqvp3qj þ ejpqvp3qi

�
(6)

respectively. Here, vi is the differential operator, ui is the displace-
ment vector, 3mm is the dilatation strain, and hijk

s is the symmetric
part of the second order displacement gradient tensor defined by

hsijk ¼ 1
3

�
ui;jk þ uj;ki þ uk;ij

�
(7)

where dij and eijk are the Knocker delta and permutation tensor,
respectively.

The stress measures (detailed physical interpretation of the
higher-order stresses can be found in Lam et al. (2003)) include the
classical stress tensor, sij, and the higher-order stresses, pi, sijk(1),
and mij

s, which are the work-conjugate to the deformation
measures, are given by the following constitutive relations,

sij ¼ kdij3mm þ 2m30ij (8)

pi ¼ 2ml20gi (9)

sð1Þijk ¼ 2ml21h
ð1Þ
ijk (10)

ms
ij ¼ 2ml22c

s
ij (11)

where 3ij
0
is the deviatoric strain defined as

30ij ¼ 3ij �
1
3
3mmdij (12)

k and m are the bulk and shear modulus, respectively. l0, l1 and l2 are
the additional independent material length scale parameters
associated with the dilatation gradients, deviatoric stretch gradi-
ents, and symmetric rotation gradients, respectively.

Fig. 1. Schematic of a micro-plate with distributed load.
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