ELSEVIER

Inorganic Chemistry Communications

On the synthesis and properties of the Mg^{II} complex of perfluorinated octaphenylporphyrazine $\stackrel{\leftrightarrow}{\sim}$

Pavel A. Stuzhin *, Svetlana S. Ivanova, Oscar I. Koifman, Oleg A. Petrov, Anna Nazarova

Department of Organic Chemistry, Ivanovo State University of Chemical Technology, Friedrich Engels Pr-t, 7, Ivanovo RF-153000, Russia

ARTICLE INFO

ABSTRACT

Article history: Received 22 July 2014 Received in revised form 28 August 2014 Accepted 2 September 2014 Available online 4 September 2014

Keywords: Perfluorinated octaphenylporphyrazine Mg^{II} complex Free-base Synthesis Reaction of *cis*-dicyanoperfluorostylbene (1-*cis*) with Mg^{II} butoxide in *n*-butanol leads to the Mg^{II} complex of octa-(pentafluorophenyl)porphyrazine (**2**), contaminated with by-products due to partial nucleophilic substitution of the fluorine atoms by butoxy groups. Treatment of the Mg^{II} complex with CF₃COOH gives the metal-free perfluorinated octaphenylporphyrazine (**3**). The UV–VIS spectral data obtained for the Mg^{II} complex **2** and its behavior in CF₃COOH solution differs from that reported for the "same" species obtained by cyclotetramerization in the presence of Mg^{II} butoxide of the diiminopyrroline derived from dicyanoperfluorostylbene reported recently by *S. Kayaköy* and *E. Gonca* [*Inorganic Chemistry Communications* 21 (2012) 28–31].

© 2014 Elsevier B.V. All rights reserved.

Recently we have reported the synthesis of perfluorinated octaphenylporphyrazine $H_2OPhPAF_{40}(3)$ [1] which was obtained by template cyclotetramerization of dicyanoperfluorostylbene (1) (mixture of cis- and trans-isomers, i.e. bis(perfluorophenyl) substituted maleo- and fumarodinitriles) in a melt with In^{III} hydroxydiacetate followed by catalytic demetallation of the intermediate In^{III} complex (HO)InOPhPAF₄₀ in the acidic medium containing chloride anions. This synthetic methodology (dinitrile \rightarrow In^{III} complex \rightarrow free base) for metal free porphyrazines, which was elaborated by us for the non-fluorinated analogs [2], appears to be especially useful for the preparation of perfluorophenyl substituted porphyrazines, since it allows to avoid nucleophilic conditions of the Linstead's methodology (dinitrile $\rightarrow Mg^{II}$ complex \rightarrow free base) [3] more commonly used for preparation of various substituted porphyrazines [4]. We have supposed that the use of Mg^{II} alkoxide (usually *n*-propoxide or *n*-butoxide) as template agent in the Linstead cyclotetrametrization might cause a partial substitution of the fluorine atoms in perfluorinated phenyl rings by alkoxy groups. Indeed, it is known that the fluorine atom in pentafluorophenyl group, especially in the *para*-position, can be easily substituted by various nucleophiles [5,6] and this reaction was even used for the synthesis of polymers [7,8] and as a click approach in the functionalization of *meso*-pentafluorophenyl substituted porphyrins [9–11] and their analogs [12]. In the present communication we report the synthesis of the Mg^{II} complex of perfluorinated octaphenylporphyrazine, MgOPhPAF₄₀ ($\mathbf{2}$), by template cyclotetramerization of cis-dicyanoperfluorostylbene (1) in the presence of

* Corresponding author.

magnesium(II) *n*-butoxide and, alternatively, by complexation of the metal free porphyrazine $H_2OPhPAF_{40}$ (**3**) with Mg(OAc)₂ in acetone or DMSO (Scheme 1). Our results and spectral data for the Mg^{II} complex MgOPhPAF₄₀ (**2**) obtained by both approaches are in disagreement with the data recently reported by Kayaköy and Gonca [13] for the "same" compound prepared through diiminopyrroline derivative **6** (diiminoimide method, see Scheme 2 and discussion below).

Bis(pentafluorophenyl)maleodinitrile (*cis*-dicyanoperfluorostylbene) (1) [1,14] (512 mg, 1.25 mmol) was refluxed with suspension of Mg^{II} *n*butoxide (1.25 mmol prepared from 30 mg of magnesium) in *n*-butanol (25 ml) until the reaction mixture became dark blue. The residue obtained after evaporation of solvent was dissolved in CH₂Cl₂ and purified by column chromatography on silica to remove non-macrocyclic byproducts. The UV–VIS spectrum of the main fraction contained the intense band at 628 nm and additional broad band at ca. 703 nm (Fig. 1, curve 1).

The MALDI-TOF spectrum of this fraction (Fig. 2) contains the negative molecular ion peak $[M + H]^-$ of the desired Mg^{II} complex MgOPhPAF₄₀ (**2**) at m/z = 1665 and additional minor bands at m/z = 1719 and 1773 corresponding to the $[M + H]^-$ peaks of by-products in which butoxy group(s) are present instead of one or two fluorine atoms (MgOPhPAF_{40-n}(OBu)_n n = 1 or 2). Possibility of partial substitution of the fluorine atoms in perfluorinated phenyl rings in the course of cyclotetramerization of the dinitrile occurring in the presence of Mg^{II} butoxide was well expected (see above). The pure product MgOPhPAF₄₀ (**2**) with UV–VIS spectrum typical for symmetrical Mg^{II} porphyrazines containing a single and narrow Q-band in the visible region at 628 nm and Soret band in the UV-region at 368 nm (Fig. 1, curve 2) was obtained after additional gradual chromatography using hexane–CH₂Cl₂ mixture [15].

[☆] Perfluorinated porphyrazines. 2. Part 1 see Ref. [1].

E-mail address: stuzhin@isuct.ru (P.A. Stuzhin).

Scheme 1. Synthesis of perfluorinated octaphenylporphyrazines using Linstead's approach.

Scheme 2. Synthesis of Mg^{II} octaarylporphyrazines (MgOArPA) by diiminoimide method.

Acidification of the solution of Mg^{II} complex **2** in CH_2Cl_2 by CF_3COOH leads to its smooth demetallation which can be followed spectrophotometrically (Fig. 3) by appearance of the split Q-band with maxima at 587 and 657 nm. The UV–VIS spectrum of the obtained product **3** is typical for metal free porphyrazines, and its spectral parameters [16] are identical to the data earlier reported for $H_2OPhPAF_{40}$ prepared by demetallation of the In^{III} complex (HO)InOPhPAF₄₀ [1]. The Mg^{II} complex **2** can be also obtained from the metal free porphyrazine **3** in the presence of Mg^{II} acetate in various solvents (acetone, DMSO, EtOH, THF, etc.) (Fig. 4).

The maxima of the Q bands in the UV–VIS spectra of perfluorinated Mg^{II} complex **2** (628 nm) and metal free porphyrazine **3** (587 and 657 nm) are shifted hypsochromically as compared to the corresponding non-fluorinated octaphenylporphyrazines (637 nm for Mg^{II} complex and 595 and 663 nm for the free base [17]). Interestingly, that introduction of CF₃ groups in the *m*-positions of phenyl rings leads to a lesser hypsochromic shift of the Q-band (631 nm for MgOPhPA(CF₃)₈ and 589, 658 nm for H₂OPhPA(CF₃)₈ [18]), while introduction of *p*-tert-butyl groups results in the bathochromic shift (644 nm for MgOPhPA(^tBu)₈ and 614, 681 nm for H₂OPhPA(^tBu)₈ [19]). The hypsochromic shift of the Q-bands in octaarylporphyrazines in the presence of electron-withdrawing groups in phenyl rings is due to stabilization of the highest occupied π -molecular orbital of the porphyrazine macrocycle, while electron-donating *p*-tert-butyl groups destabilize this orbital and lead to a bathochromic shift.

It should be noted that UV–VIS spectral data of the Mg^{II} complex **2** obtained by us (368 and 628 nm in CH_2Cl_2) differ from the values reported by Kayaköy and Gonca [13] (356 and 668 nm in $CHCl_3$) for the compound which they have assigned the same structure but prepared using diiminoimide approach through diiminopyrroline derivative **6** (Scheme 2). The strong bathochromic shift of the Q-band maximum in the Mg^{II} complex reported by Kayaköy and Gonca [13] (668 nm) as compared to all known Mg^{II} octaarylporphyrazines MgOArPA (Ar =

 $C_6F_5 - 628$ nm, *m*-CF₃Ph - 631 nm, *p*-^tBuPh - 644 nm, *p*-MeOPh - 648 nm) is a clear indication that substituents attached to the porphyrazine core in this species have strong electron-donating character. Indeed, such bathochromic position of the Q-band was observed only for Mg^{II} porphyrazines bearing eight strongly electron-donating alkylsulfanyl or dialkylamino groups (MgPA(SMe)₈ - 672 nm [20], and MgPA(NMe₂)₈ - 709 nm [21]).

The Mg^{II} complex **2** prepared by us and the "same" species reported by Kayaköy and Gonca [13] exhibit also a quite different behavior in the acid medium. While we have observed a smooth demetallation of the Mg^{II} complex **2** in the presence of CF₃COOH with formation of the free base **3**, which even in 100% CF₃COOH is non-protonated and stable in

Fig. 1. UV–VIS spectra recorded in CH_2Cl_2 for the fractions obtained during chromatography of the cyclotetramerization products of *cis*-dicyanoperfluorostylbene in the presence of Mg^{II} butoxide: 1 - after the 1st chromatography, 2 - pure MgOPhPAF₄₀ (2) after the 2nd chromatography.

Download English Version:

https://daneshyari.com/en/article/7749239

Download Persian Version:

https://daneshyari.com/article/7749239

Daneshyari.com