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a b s t r a c t

The governing equilibrium equations for strain gradient elastic thin shallow shells are derived, consid-
ering nonlinear strains and linear constitutive strain gradient elastic relations. Adopting Kirchhoff’s
theory of thin shallow structures, the equilibrium equations, along with the boundary conditions, are
formulated through a variational procedure. It turns out that new terms are introduced, indicating the
importance of the cross-section area in bending of thin plates. Those terms are missing from the existing
strain gradient shallow thin shell theories. Those terms highly increase the stiffness of the structures.
When the curvature of the shallow shell becomes zero, the governing equilibrium for the plates is
derived.

� 2010 Elsevier Masson SAS. All rights reserved.

1. Introduction

Thin plate theory has found a lot of applications in the areas of
micromechanics and nanomechanics. Thin films, micro-electro-
mechanical systems and nano-electromechanical systems are
typical applications of the thin beam theory, where size effects have
been observed. Many researchers, Papargyri-Beskou et al. (2003),
Lazopoulos (2004), have correlated thin beam theory with the
strain gradient elasticity theories (Mindlin, 1965; Altan and
Aifantis, 1997; Ru and Aifantis, 1993; Yang et al., 2002). The
theory of gradient strain elasticity has been applied to many
mechanics problems in plasticity and dislocation, (Aifantis, 2003;
Fleck and Hutchinson, 1997, 1993, Fleck et al., 1994). Further
applications of the strain gradient elasticity theories have appeared
in lifting various singularities in fracture problems, Altan and
Aifantis (1997) and around concentrated forces like the Flamant
problem, Lazar and Maugin (2006).

In the present work the bending Kirchhoff’s plate theory will be
discussed into the context of a simplified strain gradient elasticity
theory, where new terms, depending not only on the moment of
inertia of the cross-section but also on the area of the cross-section
are introduced. Those terms highly increase the stiffness of the

plate. The author, Lazopoulos and Lazopoulos (2010), has already
studied the behavior of thin strain gradient elastic beams using the
proposed procedure. Terms of the same type have been introduced
in bending of beams by Yang et al. (2002) and their theory has been
applied to various bending problems, (Lam et al., 2003; Park and
Gao, 2006; Ma et al., 2008). Nevertheless, that couple stress
theory does not include a substantial part of the strain gradient
theory that is the increase of the higher order derivatives in the
governing equilibrium equations. Those terms are necessary for the
development of boundary layers which are characteristic of the
strain gradient elasticity applications. Furthermore Yang et al.
(2002) ends up with a symmetric stress tensor assuming zero
couple moment, Eq. (33). This requirement is an additional condi-
tion which is not derived by any principle of mechanics. Further,
couple stresses and symmetric stress tensor is not compatible. In
fact the present theory bridges the theories bending theories pre-
sented by Papargyri-Beskou et al. (2003) and Yang et al. (2002) in
a consistent way including not only the higher order derivatives in
the governing equilibrium equations, necessary for the develop-
ment of boundary layers missing from the theory of Yang et al.
(2002), but also the terms depending upon the cross-section area
missing from the theory of Papargyri-Beskou et al. (2003), that
highly increase the stiffness of the thin beam when the beam
thickness reduces. The governing equilibrium equation for the thin
plate with the corresponding boundary conditions will be derived
through a variational approach for plate bending problems.
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2. Geometrically nonlinear deformations of a shallow thin
shell

Adopting Kirchhoff’s theory for thin shallow shells along with
the nonlinear strain tensor, a simple version of Mindlin’s strain
gradient elastic constitutive relations is recalled, introducing
a geometrically nonlinear theory of elasticity with microstructure,
a micro-elasticity theory equipped with two additional constitutive
coefficients, apart from the Lame’ constants is used. The intrinsic
bulk length g and the directional surface energy length lk are the
additional constitutive parameters.

Hence, the strain energy density function, for the present
geometrically nonlinear case, is expressed by,

W ¼ 1
2lemmenn þ Gemnenm þ g2

�1
2lekmmeknn þ Gekmneknm

�
þ lk

�1
2lðekmmenn þ emmeknnÞ þ Gðekmnenm þ emneknmÞ

� ð1Þ
where, eij denotes Green’s (or Lagrangean) strain and eijk the
nonlinear strain gradient respectively, with

eij ¼ eji ¼
1
2
�
viuj þ vjui þ viuk,vjuk

�
; eijk ¼ eikj ¼ viekj (2)

and ui ¼ uiðxkÞ, the finite displacement field. The present form of
the strain energy density function is the simplest one for the strain
gradient elasticity problems including surface energy density, see
Vardoulakis (2004).

If the shallow shell is described by the middle surface in its
initial shape by the function zðx; yÞ, recalling Kirchhoff’s theory of
thin shells, the components of the nonlinear Green’s tensor are
expressed by,

exx ¼ ux þ zxwx � z wxx þ 1
2w

2
x

eyy ¼ vy þ zywy � zwyy þ 1
2w

2
y

exy ¼ 1
2
�
uy þ vx

� þ 1
2
�
zxwx þ zywy

� � zwxy þ 1
2
wxwy

(3)

where, (x,y) is the horizontal plane and w(x,y) is the vertical
displacement of the point lying on the middle surface. The second
PiolaeKirchhoff’s stress Sij used in Lagrangean description is
defined by,

Sij ¼
vW
veij

¼ lekkdijþ2Geijþ lk
�
leknndijþ2Gekij

�
; k¼ xory (4)

and the double second PiolaeKirchhoff stresses by,

Sijk ¼ vW
veijk

¼ g2
�
leinndjk þ 2Geijk

�
þ li

�
lenndjk þ 2Gejk

�
(5)

For the present study we consider a thin plate of thickness h
shown in Fig. 1. The xy-plane is the plane of the plate, whereas the z
axis is the deflection axis. The region of the plate in the xy plane is
Sm and the boundary in the xy plane is C. The plate is bending under
the action of the distributed transversal loads p(x,y), the edge
momentsMcd and the double momentsmcd where c, d ¼ v or s, the
edge force Vv, exhibiting the (additional) deflectionwðx; yÞ in the z-
direction.

Therefore, the variation of the strain energy dU of the plate is
defined by,

dU ¼
ZZZ

V

�
Sijdeij þ Sijkdeijk

�
dv (6)

It is pointed out that in the existing theories for thin structures
into the context of strain gradient elasticity, the contribution of the
ezij terms does not exist (Papargyri-Beskou et al., 2003; Papargyri-
Beskou and Beskos, 2008; Park and Gao, 2006; Yang et al., 2002).
In the present theory, those terms are quite important for thin
structures when the thickness of the thin structures is comparable
to the bulk intrinsic length of the material. In this case the variation
of the strain energy density is expressed by,

dU ¼
ZZZ

V

��
Sxxdexx þ Syydeyy þ 2Sxydexy

�þ �
Sxxxdexxx

þ Syxxdeyxx þ Szxxdezxx
�þ �

Sxyydexyy þ Syyydeyyy

þ Szyydezyy
�þ 2

�
Sxxydexxy þ Syxydeyxy þ Szxydezxy

��
dxdydz

(7)

Since the shell is thin and shallow, the transverse normal stress
Szz may be neglected and the (x, y, z) coordinate system can be
considered approximately locally rectangular Cartesian. Conse-
quently, we may have

Sxx ¼ E�
1� n2

��exx þ neyy
�

; Syy ¼ E�
1� n2

��nexx þ eyy
�
;

Sxy ¼ 2Gexy ð8Þ

with E Young’s modulus, n Poisson’s ratio and G shear modulus.
For the thin shallow shell, the external forces are the body

forces prescribed per unit area of the (x,y) plane and their
components in the x, y, z directions are denoted by, X;Y ; Z
correspondingly. The traction per unit length of the boundary C is
composed by the forces Rx, Ry, Rz, acting along the x, y, z directions
respectively and the double forces Rxx, Ryy, Rxxy, Ryxy. Further, the
moments Mn ; Ms are the applied moments per unit boundary
length in the normal (v) and the tangential (S) directions. Non-
classical double moments mnn;mss;mns, due to the gradient elas-
ticity, are also applied to the boundary. Therefore the principle of
virtual work gives,

dV ¼ RRR
V

��
SxxdexxþSyydeyyþ2Sxydexy

�þ�
SxxxdexxxþSyxxdeyxxþSzxxdezxx

�þ�
SxyydexyyþSyyydeyyyþSzyydezyy

�
þ2

�
SxxydexxyþSyxydeyxyþSzxydezxy

��
dxdydz�R R

Sm

½XdxþYdyþZdw�dxdy�H
C

n
RxduþRy dvþRxxduxþRyydvyþRxy

ðduyþdvxÞ
2

þRzdwþMndwnþMsdwsþmnndwnnþmssdwssþmnsdwns

o
ds ð9Þ

K.A. Lazopoulos, A.K. Lazopoulos / European Journal of Mechanics A/Solids 30 (2011) 286e292 287



Download English Version:

https://daneshyari.com/en/article/774937

Download Persian Version:

https://daneshyari.com/article/774937

Daneshyari.com

https://daneshyari.com/en/article/774937
https://daneshyari.com/article/774937
https://daneshyari.com

