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a b s t r a c t

Non-smooth mechanics is concerned with systems for which constraints are imposed on the physical
quantities or their time derivatives. This article addresses the asymptotic behaviour (i.e. as time tends
towards infinity) of such systems when they are submitted to a given loading history. A special emphasis
is laid on shape-memory alloys structures, which are a typical example of systems for which an analysis
in non-smooth mechanics is required. Extending the approach introduced by Koiter in plasticity, we state
sufficient conditions for the energy dissipation to remain bounded in time, independently on the initial
state. Concerning the asymptotic behaviour in the particular case of cyclic loadings, we also point out the
fundamental differences that exist between the framework of plasticity and that of non-smooth
mechanics.

� 2010 Elsevier Masson SAS. All rights reserved.

1. Introduction

This article is concerned with the asymptotic behaviour (i.e. as
time t tends towards infinity) of inelastic structures under
prescribed loading histories. Much is known for elastic perfectly
plastic structures: one of the earliest and most seminal contribu-
tion in that field has been made by Koiter (1960), following a pio-
neering idea of Melan (1936). The so-called MelaneKoiter static
theorem gives a sufficient condition for the energy dissipation to
remain bounded with respect to time. That situation is referred to
as shakedown, and is associated with the intuitive idea that the
structure behaves elastically for time t sufficiently large. The Mel-
aneKoiter theorem has the distinctive property of being path-
independent, i.e. independent on the initial state of the structure. In
the particular case of cyclic loadings, it is also known (Halphen,
1978; Wesfreid, 1980) that the stress response s(t) always
converge towards a cyclic response sN(t) as t/þN. Similarly, the
rate of plastic strain _aðtÞ converges towards a cyclic response _aNðtÞ.
Moreover, both sN(t) and _aNðtÞ have the same time period T as the
applied loading. The plastic strain a(t) does not necessarily
converge towards a cyclic response, since

R T
0 _aNðtÞdt may be

different from 0. That situation is referred to as ratchetting and
implies the collapse of the structure through the accumulation of
plastic strain. In the case where

R T
0 _aNðtÞdt ¼ 0, one classically

distinguishes the cases of shakedown ð _aN ¼ 0Þ and accommoda-
tion ð _aNs0Þ. In that last case, the plastic strain a(t) converges

towards a cyclic but non constant response aN(t). A crucial property
of elastic perfectly plastic structures is that the asymptotic rate of
plastic strains _aN is unique. This implies that the asymptotic
regime (shakedown, accommodation, or ratchetting) is path-
independent. That property has fostered the development of direct
methods aiming at determining the asymptotic regime for a given
cylic loading, without using a step-by-step incremental analysis
(Zarka et al., 1988; Akel and Nguyen, 1989; Peigney and Stolz, 2001,
2003; Maitournam et al., 2002).

All the results mentioned so far apply for elastic perfectly plastic
structures, and can be directly extended to the C e class of gener-
alized standard materials (Halphen and Nguyen, 1975). Outside of
that framework, a lot of progress still remains to be made. Several
attempts have been made to extend the MelaneKoiter theorem to
various types of nonlinear behaviour (see (Pham, 2008) for an
extensive review). However, as discussed in details by Pham (2008),
some of the extensions proposed in the literature lead to non path-
independent resultswhich are therefore of little practical use. This is
notably the case for shape-memory alloys: shakedown in shape-
memoryalloys structures has recently been studied by Feng and Sun
(2007), but the shakedown theorem obtained by those authors has
latter been recognized not to be path-independent (Pham, 2008).
Wu et al. (1999) also have provided some results on shakedown in
shape-memoryalloys, but their study is limited to the local response
of the material and does not take into account the equilibrium
equations that would arise in the structural problem.

Shape-Memory Alloys (SMAs) display peculiar properties such
as the superelastic behaviour or the shape-memory effect, which
are both the result of a solid/solid phase transformation betweenE-mail address: michael.peigney@polytechnique.org.
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different crystallographic structures (known as austenite and
martensite). Much effort has been devoted to developing consti-
tutive laws for describing the behaviour of SMAs (see e.g. the recent
review by Kan and Kang (2010)). The phase transformation is
typically described by an internal variable awhich e depending on
the complexity of thematerial modelemay be scalar or vectorial. A
fundamental observation is that, in most of SMA models, the
internal variable a must comply with some a priori inequalities,
resulting from the mass conservation in the phase transformation
process. As a consequence, the internal variable a is constrained to
take values in a set T that is not a vectorial space. The presence of
such constraints constitutes a crucial difference with plasticity
models, and calls for special attention when the structural evolu-
tion problem is considered. This last point has been noted by
Govindjee and Miehe (2001) in the context of numerical methods
for simulating SMA structures: apart from few exceptions
(Govindjee and Miehe, 2001; Peigney, 2006), most existing
numerical methods handle the constraints in an ad hoc fashion, for
lack of a consistent formulation of the time continuous evolution
problem. It has to be observed, however, that mathematically
consistent models of evolution problems in shape-memory alloys
have been proposed (Frémond, 2002; Kru�zík et al., 2005). One
possible approach is to resort to the so-called “non-smooth
mechanics” framework (see (Frémond, 2002) and references
therein), which is not restricted to shape-memory alloys and
actually applies in the general situation where constraints are
physically imposed on the state variables or their time-derivative.
This article is devoted to studying the asymptotic behaviour of
solids in such a framework.

The structure of the article is as follows: in Section 2we describe
the class of material models that is used in our study, introducing
the relevant concepts of non-smooth mechanics. That class of
materials is general enough to encompass standard models of
plasticity and phase transformation. The corresponding structural
evolution problem is presented in Section 3. Extending the
reasoning of Koiter to non-smooth mechanics, we then proceed in
Section 4 to give conditions ensuring that the energy dissipation
remains bounded independently on time, whatever the initial state
of the structure is. In a way similar to the original MelaneKoiter
theorem in plasticity, the results of Section 4 deliver lower bounds
on the domain of loadings for which shakedown occurs. An
example problem is studied in Section 5. That example serves two
purposes: firstly, it allows us to illustrate the shakedown theorems
of Section 4 and study the optimality of the bounds delivered by
those theorems. Secondly, for cyclic loadings, the problem of
Section 5 allows us to show that the asymptotic behaviour of
systems in non-smooth mechanics is fundamentally different e

and actually more complex e than in plasticity: when the loading
exceeds the shakedown limits predicted by the theorems of Section
4, the asymptotic regime is notably found to be strongly dependent
on the initial state of the structure.

2. Constitutive laws

2.1. Unconstrained case

The local state of the material is described by the strain e and an
internal variable a, living respectively in vectorial spaces denoted
by E andA. For now, we assume that a is unconstrained, in the sense
that a is allowed to take any value in A. The scalar products in A

and E are denoted by . and :, respectively. The associated norms are
denoted by j$j and k$k, i.e. jaj ¼

ffiffiffiffiffiffiffiffi
a:a

p
for any a˛A and kek ¼

ffiffiffiffiffiffiffiffiffi
e : e

p

for any e˛E. Adopting the framework of generalized standard
materials (Halphen and Nguyen, 1975), the behaviour of the
material is determined by the free energy function w : E�A/R

and the dissipation potential F : A/R. More precisely, denoting by
_a the left-time derivative of a, the constitutive equations are

s ¼ vw
ve

ðe;aÞ; A ¼ �vw
va

ðe;aÞ (1)

A˛vF
�
_a
�

(2)

where s is the stress, A is the thermodynamical force associated to
a, and v denotes the subdifferential operator. Recall that the sub-
differential vf of a function f : A/R is the multi-valued mapping
defined by

vf ðxÞ ¼
n
sbIA���f ðyÞ � f ðxÞ � s:ðy � xÞcybIAo (3)

If f is convex, then vf is a monotone operator (Brézis, 1972), i.e.:

ðy0 � yÞðx0 � xÞ � 0 for all x˛A; x0˛A; y˛vf ðxÞ; y0˛vf ðx0Þ (4)

In (2), the set vF(0) can be interpreted as the elasticity domain of
the material, i.e. as the set of thermodynamical forces A compatible
with a purely elastic behaviour ð _a ¼ 0Þ.

In this article, we will consider free energy functions w(e, a) of
the form

wðe;aÞ ¼ 1
2
ðe� K :aÞ : L : ðe� K:aÞ þ f ðaÞ (5)

where L : E/E is a symmetric positive linear mapping, K : A/E is
a linear mapping, and f : A/R is a positive differentiable function
(not necessarily linear). The dissipation potentialFwill be assumed
to satisfy the following properties:

ðiÞ F is convex; positive; null at the origin
ðiiÞ dr > 0 such that fA˛AjjAj � rg3vFð0Þ (6)

In the theory of generalized standard materials, the assumption (6)
(i) is a usual requirement. Indeed, (6)(i) ensures the positiveness of
themechanical dissipationA: _a, in accordancewith the second lawof
thermodynamics. Using (3), (6)(i) is seen to imply that 0 is in the
elasticity domain vF(0). The assumption (6)(ii) means that 0 is
actually in the interior of vF(0). That additional assumption is not
a stringent requirement and is verified for commonmaterialmodels.

With the form (5) of the free energy, the relation (1) becomes

s ¼ L : ðe� K:aÞ; A ¼ tK : s� f 0ðaÞ (7)

where tK : E/A is the transposed of K, defined by a.(tK:s)¼ s:(K.
a) for all ða;sÞ˛A� E. The relation (7) shows that the total strain e

is the sum of an elastic strain L�1:s and an inelastic strain K.a. A
wide range of commonly used plasticity models fall in the format
(5)e(6). For latter reference, let us consider some specific examples.

Example 1. (Uniaxial perfect plasticity) The classical uniaxial
model of elastic perfectly plastic materials corresponds to

E ¼ A ¼ R; wðe;aÞ ¼ E
2
ðe� aÞ2; F

�
_a
�
¼ k

�� _a�� (8)

where E and k are positive constants. The subdifferential vFð _aÞ is
given by

vF
�
_a
�
¼

8<: ½ � k; k� if _a ¼ 0
k if _a > 0
�k if _a < 0

(9)

The elasticity domain vF(0) of the material is the interval [�k, k].

Example 2. (Three-dimensional hardening plasticity) In three-
dimensional modelling of elastic plastic materials, the space E is
generally taken as the space R3�3

s of symmetric second-order
tensors, and the corresponding scalar product is defined by
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