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a b s t r a c t

A new hybrid finite element formulation is presented for solving two-dimensional orthotropic elasticity
problems. A linear combination of fundamental solutions is used to approximate the intra-element
displacement fields and conventional shape functions are employed to construct elementary boundary
fields, which are independent of the intra-element fields. To establish a linkage between the two
independent fields and produce the final displacement-force equations, a hybrid variational functional
containing integrals along the elemental boundary only is developed. Results are presented for four
numerical examples including a cantilever plate, a square plate under uniform tension, a plate with
a circular hole, and a plate with a central crack, respectively, and are assessed by comparing them with
solutions from ABAQUS and other available results.

� 2010 Elsevier Masson SAS. All rights reserved.

1. Introduction

Orthotropic composite materials are now used extensively in
the manufacturing of automobile parts and aerospace structures
due to their high strength to weight and stiffness to weight ratios.
The research to develop efficient numerical methods for accurately
predicting the stress and failure behavior of structures containing
orthotropic materials has attracted many research engineers and
scientists (Jirousek and N’Diaye, 1990; Ochoa and Reddy, 1992).

In contrast to isotropic elastic material that has only two inde-
pendent elastic constants, in orthotropic solids there are nine inde-
pendentmaterial constants for three-dimensional (3D) problems and
four for two-dimensional problems (2D). The increase in the number
of material constants means that solutions for orthotropic elastic
problems are difficult to derive theoretically. As an alternative to
analytical solutions and experiments, numerical simulations like the
finite element method (FEM) and the boundary element method
(BEM) play an important role in the process of designing and
analyzing composite engineering structures, andmuch literature can
be found in the field of orthotropic elastic materials including, for
instance Jirousek andN’Diaye (1990),Huanget al. (2004), Pervez et al.
(2005), Rao and Rahman (2005), Wang and Sun (2005), Asadpoure
et al. (2006), Sladek et al. (2006), Sladek et al. (2007), Zhou et al.
(2007), Ferreira et al. (2009), Danas and Ponte Castañeda (2009), as
well as a book (Ochoa and Reddy, 1992) and the references therein.

However, as indicated by Qin (2000), Qin andWang (2008) and
Wang and Qin (2009), existing methods including conventional
finite element formulation, the boundary element approach,
meshless methods, and the hybrid Trefftz finite element method
(HT-FEM) have some disadvantages in solving engineering struc-
tures with composite materials and local effects. For instance, in
FEM it is necessary to evaluate time-consuming domain integrals
and refined meshes near the local effects; moreover, conventional
FEM may not guarantee satisfaction of the traction continuity
condition on the common boundary of two adjacent elements. In
contrast to the FEM, the BEM can reduce the computing dimensions
by one, which may significantly reduce computing time. It is,
however, time-consuming and tedious for the treatment of
singular/supersingular integrals. Additionally, for multi-material
problems, BEM requires extra equations to satisfy the interfacial
continuity conditions. On the other hand, HT-FEM (Jirousek et al.,
1995, Jirousek and Qin, 1996, Qin, 1995, 1996, 2003, 2004)
inherits the advantages of FEM and BEM and can develop special
elements for handling local effects. The drawbacks of HT-FEM are
due to the construction of T-complete functions, the choice of
truncated terms of T-complete functions, and the complex coordi-
nate transformation required to keep the approach stable. Thus
there is a need to develop new computational models that over-
come those disadvantages. Through use of fundamental solutions
rather than the T-complete functions in HT-FEM, a novel hybrid
finite element formulation, called HFS-FEM, which is constructed
using special fundamental solutions, was presented and success-
fully used for thermal analysis of a plate with special-purpose hole
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or fiber elements (Qin and Wang, 2008, Wang and Qin, 2009). In
HFS-FEM, arbitrarily-shaped elements can be constructed by
proper intra-element approximation with fundamental solutions,
and source points are placed outside the element for removing the
singularity of fundamental solutions. Combining the intra-element
approximation, the independent element boundary interpolation
and the new hybrid functional, the algorithm involves boundary
integrals only. At the same time, the fundamental solutions used in
HFS-FEM usually have simpler expression than the T-complete
functions in HT-FEM, so that HFS-FEM discards the complicated
coordinate transformation required in HT-FEM.

In contrast to the work in Qin and Wang (2008) and Wang
and Qin (2009), this paper focuses on developing a fundamental-
solution-based FEM for plane orthotropic elasticity. The formula-
tion is based on a new hybrid variational functional and two groups
of independent approximations to displacements which are
defined within the element and on the element boundary,
respectively. The Gaussian theorem is used to convert the domain
integral appearing in the hybrid functional into the boundary
integral, and the stationary condition of the hybrid functional is
applied to produce the final solving equations and to establish the
linkage of the assumed internal displacement field and boundary
displacement field. Finally, several numerical results are presented
to assess the performance of the proposed element formulation.

2. Basic equations in plane orthotropic elasticity

Let ui, 3ij and sij be the components of displacement, strain and
stress fields, respectively, with the subscripts i and j having the
range (1,2). For homogeneous and orthotropic materials with two
mutually orthogonal axes of elastic symmetry in the plane, the
plane problem of classical elasticity is governed by the kinematic
equations, the elastic constitutive expressions relating the in-plane
stresses and strains, and the equilibrium equations without the
body forces, that is (Lekhntiskii, 1963; Ting, 1996)8<:
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where g12¼ 2312 denotes the engineering strain, the subscript
comma represents the differential to the spatial coordinate
component, i.e. v,i¼ v/vXi, v,ij¼ v2/vXivXj, and
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for the case of plane stress, and

~sij ¼ sij � si3s3j=s33 ði; j ¼ 1;2Þ
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for the case of plane strain. sij(i,j¼ 1,2) and s13, s23, s66 are inde-
pendent material compliance constants which can be expressed in
terms of the engineering elastic constants.

In the material constants mentioned above, the subscripts 1 and
2 refer to the principal directions of material symmetry, which
coincide here with the X1 and X2 reference axes.

Substituting Eqs. (1) and (2) into Eq. (3), we can obtain the
following basic equations expressed in terms of displacement
components ui"
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Moreover, appropriate boundary conditions should be com-
plemented to keep the problems complete; that is, on the boundary
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where overbar denotes specified values.

3. Fundamental solutions for plane orthotropic elasticity

The fundamental solution or Green’s function plays an impor-
tant role in the presented approach and is used to convert the
domain integral into a boundary integral. It is necessary, therefore,
to describe the fundamental solutions for plane orthotropic elas-
ticity in order to provide a common source for reference in later
sections.

In an orthotropic elastic infinite plane, for a unit force acting at
xs (source point), the corresponding singular fundamental solu-
tions at a field point x are required to satisfy
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where the solutions u*1k andu
*
2k are given by (Rizzo and Shippy,

1970)
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inwhich d(x,xs) denotes the Dirac delta function, u*ik are the induced
displacement components in the i-direction at the field point x
when a unit point force is applied along the k-direction at the
source point xs, and
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