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a b s t r a c t

A meshless method based on thin plate spline radial basis functions and higher-order shear deformation
theory are presented to analyze the free vibration of clamped laminated composite plates. The singularity
of thin plate spline radial basis functions is eliminated by adding infinitesimal to the zero distance.
Convergence characteristics of the present thin plate spline radial basis functions for the vibration
analysis of the clamped laminated plates are investigated. The frequencies computed by the present
method agree well with the available published results.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Laminated composite plates have been widely used in indus-
tries, especially in aerospace due to their high strength-to-weight
ratio. With the wide application of laminated composite plates,
vibration analysis of laminated composite plates becomes an
important task (Khdeir and Reddy,1999; Khdeir and Librescu, 1988;
Wang,1997; Aagaah et al., 2006; Akhras, 2005; Baharlou and Leissa,
1987; Shi et al., 2004; Reddy and Phan, 1985; Soldatos andMessina,
2001).

The meshless method in which the problem domain is repre-
sented by a set of distributed nodes have been successfully applied
to analyze the free vibration of laminated composite plates. Liew
et al. (2004) used the reproducing kernel particle method and
FSDT to analyze the free vibration and buckling of shear-deform-
able plates. FSDT and the moving least squares differential quad-
rature method were applied to vibration analysis of symmetrically
laminated plates by Liew et al. (2003). Chen et al. (2003) used the
element free Galerkin method for the free vibration analysis of
composite laminates of complicated shape.Wu et al. (2005) applied
the moving least squares differential quadrature method to analyze
the vibration of generally laminated composite plates. The multi-
quadrics radial basis functions were applied to analyze the free
vibration of laminated composite plates by Ferreira (2005), Ferreira
and Fasshauer (2006), Ferreira et al. (2005) and Roque et al. (2006).

The inverse multiquadrics radial basis functions were used to
analyze the free vibration of laminated composite plates by Ferreira
and Fasshauer (2007) and Xiang and Wang (2009). Gaussian radial
basis functions were used to analyze the free vibration of laminated
composite plates by Xiang et al. (2009). The compact support
Wendland radial basis functions were used to analyze the free
vibration of composite and sandwich plates by Ferreira et al.
(2008).

The multiquadric, inverse multiquadric and Gaussian radial
basis functions include a shape parameter which have important
effect on the accuracy. The choice of shape parameter has been an
intense subject (Wang and Liu, 2002; Carlson and Foley, 1991). Thin
plate spline doesn’t need the shape parameter, but it has the
disadvantage of singularity when the distance between node i and
node j is zero.

In this paper, the singularity of thin plate spline radial basis
function is eliminated by adding infinitesimal to the zero distance.
The main objective of the present paper is to demonstrate the
meshless method based on thin plate spline radial basis functions
can be successfully used to analyze the free vibration of clamped
laminated composite plates. The numerical examples show that the
frequencies computed by the present method agree well with the
available published results.

2. The radial basis function method

Radial basis functions method is a truly meshless method which
approximates the whole solution of the partial differential
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equations using radial basis functions. Radial basis functions
method was used to solving partial differential equations by Kansa
(1990a,b). Most-widely used radial basis functions are

Multiquadric gj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2ij þ c2

q

Inverse multiquadric gj ¼ 1
. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2ij þ c2
q

Gaussian gj ¼ e�cr2ij

Thin plate spline gj ¼ r2mij log
�
rij
�

m ¼ 1;2;3.

where rij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi � xjÞ2 þ ðyi � yjÞ2

q
denotes the distance between

node (xi, yi) and node (xj, yj). c is the shape parameter.
Radial basis functions method for solving partial differential

equations is based on a scattered data interpolation problem. The
solution of partial differential equations is approximated by radial
basis functions in the form of

U ¼
XN
j¼1

ajgj (1)

where N is the total number of nodes, aj is unknown coefficients, gj
is radial basis function. Radial basis function used in this paper is
thin plate spline as follows

gj ¼ r6ij log
�
rij
�

In order to eliminate the singularity of thin plate spline, rij ¼ rij þ 2

when rij ¼ 0.
where 2 is infinitesimal.

3. Differential governing equations based on higher-order
shear deformation theories

Differential governing equations based on Higher-order shear
deformation theories (Reddy and Phan, 1985; Reddy, 1984) are
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