
Reflection of plane waves at the free surface of a monoclinic thermoelastic
solid half-space

Baljeet Singh
Department of Mathematics, Post Graduate Government College, Sector-11, Chandigarh 160 011, India

a r t i c l e i n f o

Article history:
Received 11 August 2009
Accepted 16 May 2010
Available online 24 May 2010

Keywords:
Generalized thermoelasticity
Anisotropy
Monoclinic
Relaxation times
Reflection

a b s t r a c t

LordeShulman and GreeneLindsay theories of generalized thermoelasticity are applied to study the
reflection from a thermally insulated stress-free thermoelastic solid half-space of monoclinic type. A
particular model is chosen for the numerical computations of reflection coefficients. Effects of anisotropy
and relaxation times are observed on reflection coefficients.

� 2010 Elsevier Masson SAS. All rights reserved.

1. Introduction

Thermoelasticity deals with the dynamical systems whose
interactions with surroundings include not only mechanical work
and external work but also exchange of heat. Biot (1956) explained
thermoelasticity by deriving dilatation based on the thermody-
namics of irreversible process and coupling it with elastic defor-
mation. But the diffusion type heat equation used in this study
predicted infinite speed for propagation of thermal signals. Lord
and Shulman (1967) defined the generalized theory of thermo-
elasticity in which a hyperbolic equation of heat conduction with
a relaxation time ensured the finite speed for thermal signals. Using
two relaxation times, Green and Lindsay (1972) developed another
generalized theory of thermoelasticity. A unified treatment of both
Lord and Shulman and Green and Lindsay theories was presented
by Ignaczak and Ostoja-Starzewski (2009). Dhaliwal and Sherief
(1980) extended Lord and Shulman (1967) generalization of ther-
moelasticity for anisotropic case. Chandrasekhariah (1986) pre-
sented a review of work done in the theory of thermoelasticity.

The thermoelasticity has wide applications in various fields such
as earthquake engineering, soil dynamics, aeronautics, astronau-
tics, nuclear reactors, high energy particle accelerator, etc.
Thermoelasticity is also used in polymer coating and to evaluate the
stress redistribution in ceramic matrix composites (Mackin and
Purcell, 1996; Barone and Patterson, 1998). The study of wave

propagation in a generalized thermoelastic media with additional
parameters like anisotropy, porosity, viscosity, microstructure,
temperature and other parameters provide vital information about
existence of new or modified waves. Such information may be
useful for experimental seismologists in correcting earthquake
estimation.

There are reasonable grounds for assuming anisotropy in the
continents. Seismic anisotropy, now widely known as a common
feature of most subsurface formations, may lead to significant
distortions in conventional seismic processing, such as errors in
velocity analysis, mispositioning of reflectors, and misinterpreta-
tion of the amplitude variation with offset (AVO) response.

Investigation of waves in anisotropic materials are considerably
more difficult than the classical and well-understood, isotropic
problem. Isotropic materials can be characterized by only two
parameters; anisotropic materials can have from 5 to 21 indepen-
dent material constants. In addition to the increased number of
parameters, the geometry of the body and symmetry of the mate-
rial may complicate the analysis. In an isotropic solid, the behavior
of the material is the same in all directions. Anisotropic solids show
a preference to certain directions. Reconciliation of the geometry of
the body with these preferred material directions constitutes
a large part of analysis in many anisotropic problems.

In an anisotropic elastic solid medium, three types of body
waves with mutually orthogonal particle motion can be propa-
gated. In general, the particle motion is neither purely longitudinal
nor purely transverse. Because of this, the three types of body
waves in an anisotropic medium are referred to as qP, qSV and qSHE-mail address: bsinghgc11@gmail.com.
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rather than as P SV and SH the symbols used for propagation in an
isotropic medium (Keith and Crampin, 1977). Chattopadhyay and
Choudhury (1995) discussed the reflection of qP waves at the
plane free boundary of a monoclinic half-space. In a subsequent
paper, Chattopadhyay et al. (1996) studied the reflection of qSV
waves. Singh (1999) commented on above two papers, where the
authors assume that qP waves are purely longitudinal and qSV
waves purely transverse. He found that most of the results of these
two papers, including the expressions for the reflection coefficients,
are erroneous. Singh and Khurana (2002) studied the propagation
of plane waves in an anisotropic elastic medium possessing
monoclinic symmetry. The expressions for the phase velocity of qP
and qSV waves propagating in the plane of elastic symmetry are
obtained in terms of the direction cosines of the propagation vector.
They have shown that, in general, qP waves are not longitudinal
and qSV waves are not transverse. Pure longitudinal and
pure transverse waves can propagate only in certain specific
directions.

The problems on wave propagation in isotropic and anisotropic
thermoelastic solids are studied by many authors. Prominent
among them are Chadwick and Sneddon (1958), Deresiewicz
(1960), Flavin (1962), Chadwick and Seet (1970), McCarthy (1972),
Puri (1973), Banerjee and Pao (1974), Sinha and Sinha (1974),
Chadwick (1979), Sharma and Sidhu (1986), Sharma (1988), Sinha
and Elsibai (1996, 1997), Singh and Kumar (1998), Verma (2002),
Abd-alla et al. (2003), Sharma et al. (2003), Singh (2003, 2006),
Othman and Song (2007) and Singh (2008).

Singh (2006) studied the plane wave propagation in a mono-
clinic generalized thermoelastic medium with thermal relaxations
and has shown the existence of three plane quasi waves, namely,
quasi-thermal (qT) wave, quasi-P (qP) wave and quasi-SV (qSV)
wave in a two-dimensional model of monoclinic generalized
thermoelastic medium in context of Lord and Shulman (1967) and
Green and Lindsay (1972) theories. In the present paper, reflection
of these planewaves from stress-free thermally insulated surface of
a monoclinic thermoelastic solid half-space is studied. Reflection
coefficients of various reflected waves are obtained and studied
numerically for a particular model to analyze effects of anisotropy
and thermal relaxations.

2. Governing equations of generalized thermoelasticity of
monoclinic type

Consider a homogeneous, anisotropic, generalized thermo-
elastic medium of monoclinic type at a uniform temperature. The
origin is taken on the thermally insulated and stress-free plane
surface and z-axis is directed normally into the half-space which is
represented by z� 0. Following Lord and Shulman (1967) and
Green and Lindsay (1972), Singh (2006) derived the governing field
equations of generalized monoclinic thermoelasticity for two-
dimensional motion in the yez plane (v/vxh 0,) and in the absence
of body forces and heat sources as
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where

b2¼ (c12þ c22)a2þ c23a3, b3¼ 2c23a2þ c33a3, (4)

and u2, u3 are components of displacement vector u in yez
plane, T is change in temperature above the reference non-uniform
temperature T0, r is the density of medium, Ce is specific heat at
constant strain, cij are the isothermal elasticities; t0, t1 are thermal
relaxation times; K2, K3 and a2, a3 are thermal conductivities and
the coefficients of linear thermal expansion along and perpendic-
ular to the axis of symmetry. The use of symbol U in Eq. (3) makes
these fundamental equations possible for two different theories of
the generalized thermoelasticity. For the LeS (LordeShulman)
theory t1¼0, U¼ 1 and for GeL (GreeneLindsay) theory t1>0,
U¼ 0. The thermal relaxations t0 and t1 satisfy the inequality
t1� t0� 0 for the GeL theory only.

3. Propagation of plane waves

The solutions of Eqs. (1)e(3) are now sought in the form of the
harmonic travelling wave

fu2;u3; Tg ¼ fA;B;Cgeikðct�p2y�p3zÞ; (5)

where k is the wave number, c is the phase speed, (p2, p3) are the
components of propagation vector and A, B, C are arbitrary
constants.

Making use of (5) in Eqs. (1)e(3) and eliminating A, B and C, we
obtain the following cubic equation

z3þ Lz2þMzþN¼ 0, (6)
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h¼ ss0v12, s¼ t0U� (i/u), s0 ¼ 1þ iut1, v12 ¼ c22/r.
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