ELSEVIER

Contents lists available at ScienceDirect

Inorganica Chimica Acta

journal homepage: www.elsevier.com/locate/ica

Research paper

Synthesis, characterization, and catalytic performance of aluminum and Tin(II) compounds supported by β -diketiminato ligands

Ying Liu, Xin Liu, Yashuai Liu, Wenling Li, Yi Ding, Mingdong Zhong, Xiaoli Ma*, Zhi Yang

School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 100081 Beijing, PR China

ARTICLE INFO

Article history:
Received 28 August 2017
Received in revised form 31 October 2017
Accepted 7 November 2017
Available online 8 November 2017

Keywords: β-Diketiminato ligands Hydroboration Main group compounds Catalysis

ABSTRACT

The four-coordinated bis(benzyl sulfide) complex $L^1Al(SCH_2Ph)_2$ (1) was synthesized in good yield by reacting one equivalent of L^1AlH_2 ($L^1 = HC(CMeNAr)_2$, Ar = 2.4,6-Me₃C₆H₂) with two equivalents of benzyl mercaptan. The reactions of L^2Li ($L^2 = HC(CMeNAr)_2$, $Ar = 2^{-i}PrC_6H_4$) with $SnCl_2$ and $AlCl_3$ in a molar ratio of 1:1 were carried out at room temperature, resulted in two new compounds, $CH\{(CH_3)CN-2^{-i}PrC_6H_4\}_2SnCl$ (2) and $CH\{(CH_3)CN-2^{-i}PrC_6H_4\}_2AlCl_2$ (3). All compounds were characterized by L^1 H NMR and L^3 C NMR spectroscopy, single crystal X-ray structural analysis and elemental analysis. The efficient catalytic performances of 1–3 for the hydroboration of organic compounds with carbonyl groups were investigated.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Organoboranes are important synthetic intermediates in various organic chemical reactions. In recent years, boron-containing products have aroused increasing attention because of their ability to be converted into many functional groups [1]. The major synthetic routes of preparing organoboranes are hydroboration in the presence of metal catalysts. Compared with some toxic and expensive transition metals [2], main group compounds have got more and more applications on laboratory level for its low price and non-toxicity [3]. It has been reported that low-valent germanium(II) and tin(II) hydride compounds (DipNacnac)MH (DipNac $nac = (DipNCMe)_2CH^-$, $Dip = C_6H_3Pr_2^i-2.6$, M = Ge or Sn) have a remarkable catalytic effect on hydroboration of a series of unactivated aldehydes and ketones with HBpin [4]. The Lewis acidity and steric effect of the ligand around the metal center seems to play a vital role in the activation of carbonyl. Owing to this reactivity, bulky ligands with β -diketiminate substituents exhibit prominent performances for metal-mediated catalysis [5]. Furthermore, our group has demonstrated that functionalized LAlH₂ ($L = HC(CMeNAr)_2$, Ar = 2,6-iPr₂C₆H₃) types such as LAIH(OTf) can be applied to facilitate the hydroboration and hydrosilylation in high yield, which functions like a transition-metal catalyst [6].

Pioneering research stimulated us to think about the design of organometallics containing β -diketiminate ligands by conferring a higher positive charge to the metal center and stabilizing of elec-

* Corresponding author.

E-mail address: maxiaoli@bit.edu.cn (X. Ma).

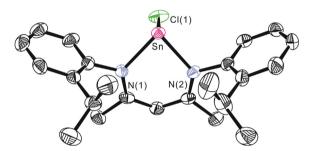
tron-deficient functional groups [7]. Herein, we report on the synthesis of three new aluminum and tin (II) compounds supported by β -diketiminato ligands and their application in catalytic hydroboration of selected aldehydes and ketones.

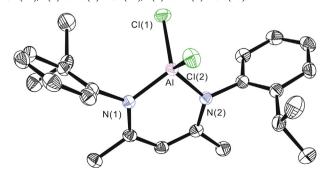
2. Results and discussion

The reaction of L^1AlH_2 with benzyl mercaptan (Scheme 1) in a molar ratio of 1:2 resulted in the products $L^1Al(SCH_2Ph)_2$ (1). Compound 2 was prepared from the reaction of L^2H with n-BuLi and $SnCl_2$ in a molar ratio of 1:1, while compound 3 was prepared from L^2H with n-BuLi and $AlCl_3$ in a molar ratio of 1:1. Compound 1 and 3 were isolated after growing colorless crystals from a concentrated n-hexane solution and compound 2 from a concentrated toluene solution, respectively. All crystals are highly soluble in common organic solvents such as toluene, dichloromethane, and tetrahydrofuran, respectively.

Compounds **1–3** were characterized by 1 H NMR and 13 C NMR spectroscopy in CDCl $_3$ solution as well as by elemental analysis. In the 1 H NMR spectra, compound **1** shows the CH $_2$ S-Ar resonances at δ 3.23 ppm in a 4:1 ratio to that of the γ -H proton at δ 5.1 ppm. The disappearance of the NH resonance (δ 12.14 ppm) of L 1 and (δ 12.85 ppm) of L 2 , shows that the center metal is added to the ligand.

X-ray quality single crystals of **1** and **3** were obtained in hexane solution while **2** in toluene at low temperature. The molecular structures as well as the selected bond lengths and angles are shown in the captions of Figs. 1–3, respectively. The X-ray single-crystal structures **1–3** show that all compounds belong to


Scheme 1. Preparation of compounds 1, 2, and 3.


Fig. 1. Molecular structure of **1** in crystals. Thermal ellipsoids are drawn at 30% level. The hydrogen atoms are omitted for clarity. Selected bond distances (Å) and angles (°): Al–N(1) 1.901(8), Al–N(2) 1.881(8), Al–S(1), 2.209(4), Al–S(2) 2.241(4); N (2)–Al–N(1) 96.9(3), S(1)–Al–S(2) 110.57(14), N(1)–Al–S(1) 113.1(3), N(1)–Al–S(2) 111.1(3), N(2)–Al–S(1) 112.3(3), N(2)–Al–S(2) 112.3(2).

the monoclinic crystal system and exhibit a symmetric arrangement.

For the structure of **1**, the aluminum center exhibits a distorted tetrahedral geometry including two nitrogen atoms of the ligand and two sulfur atoms. The Al-S bond lengths (av. 2.225 Å) are quite close to those (av. 2.225 Å) in NacNacAl(SPh)₂ reported by Terry Chu and co-workers [8]. In compound **2**, the tin (II) atom has a pyramidal coordination sphere, which is surrounded by one chlorine and two nitrogen atoms. The bond angle of N(1)-Sn-N(2) (84.22(14)°) is smaller than that in (HC-(CMeNAr)₂)SnCl (Ar =

Fig. 2. Molecular structure of **2** in crystals. Thermal ellipsoids are drawn at 30% level. The hydrogen atoms are omitted for clarity. Selected bond distances (Å) and angles (°): Sn-N(1) 2.173(4), Sn-N(2) 2.173(3), Sn-Cl(1) 2.4848(14), N(1)-Sn-N(2) 84.22(14), N(1)-Sn-Cl(1) 92.06(11), N(2)-Sn-Cl(1) 91.29(10).

Fig. 3. Molecular structure of **3** in crystals. Thermal ellipsoids are drawn at 30% level. The hydrogen atoms are omitted for clarity. Selected bond distances (Å) and angles (°): Al-N(1)1.8633(14), Al-Cl(1)2.1290(7); N(1)-Al-N(1)99.59(9), N(1)-Al-Cl(1)113.54(4), Cl(1)-Al-Cl(2)107.73(4).

Download English Version:

https://daneshyari.com/en/article/7750816

Download Persian Version:

https://daneshyari.com/article/7750816

Daneshyari.com