Inorganica Chimica Acta 406 (2013) 81-86

Contents lists available at ScienceDirect

Inorganica Chimica Acta

journal homepage: www.elsevier.com/locate/ica

Dinuclear platinum(II) complexes containing ferrocenylalkyl-thiolate and -selenolate ligands

Sarah M. Devoy, William Henderson*, Brian K. Nicholson

Department of Chemistry, University of Waikato, Private Bag 3105, Hamilton 3240, New Zealand

ARTICLE INFO

Article history: Received 18 April 2013 Received in revised form 28 June 2013 Accepted 2 July 2013 Available online 11 July 2013

Keywords: Thiolate Selenolate Ferrocene compounds Platinum complexes X-ray crystal structure

1. Introduction

The ferrocenylalkyl [Fc(CH₂)_n; Fc = $(\eta^5 - C_5H_5)$ Fe $(\eta^5 - C_5H_4)$] substituent is able to provide a remarkable stabilisation of primary phosphanes and arsanes [such as in the air-stable compounds $Fc(CH_2)_nPH_2$ (n = 1, 2) and $Fc(CH_2)_2AsH_2$ [1,2] and recent theoretical studies have investigated the electronic basis for this [3,4]. We subsequently wished to investigate whether the ferrocenylalkyl group could also stabilise other reactive main group element hydrides such as thiols, selenols and tellurols.

While the chemistry of deprotonated ferrocene-thiols (thiolates) and corresponding selenolates with the chalcogen atom directly bonded to a cyclopentadienyl ring is well-established [5], less is known about ferrocenylalkyl-thiolates and -selenolates. As an example, the long chain thiols $Fc(CH_2)_nSH$ (*n* = 6, 8, 11) are used in forming self-assembled monolayers on gold surfaces [6], and have been prepared by reaction of the bromides $Fc(CH_2)_nBr$ with thiourea, forming intermediate thiouronium salts $[Fc(CH_2)_{n-1}]$ $SC(NH_2)_2$ ⁺Br⁻, which can be converted to the free thiols [7]. The silvlated reagents FcCH₂SeSiMe₃ and Fe(η^5 -C₅H₄SeSiMe₃)₂ have recently been developed as selenolate transfer agents, for example for synthesis of the aggregate [Ag₈(SeCH₂Fc)₈(PPh₃)₄] [8]. Analogous compounds with carboxylate spacers, viz. FcC(O)OCH₂CH₂- $ESiMe_3$ (E = S, Se) have also been developed [9].

As an initial route into the chemistry, we chose to investigate the potential liberation of the thiol or selenol from dinuclear

* Corresponding author. Tel.: +64 7 838 4656.

ABSTRACT

Alkylation reactions of $[Pt_2(\mu-S)_2(PPh_3)_4]$ with haloalkylferrocenes FcCH₂Cl, Fc(CH₂)₆Br and Fc(CH₂)₁₁Br $[Fc = (\eta^5 - C_5H_5)Fe(\eta^5 - C_5H_4)]$ gave the cationic μ -thiolate complexes $[Pt_2(\mu - S)\{\mu - S(CH_2)_nFc\}(PPh_3)_4]^{\dagger}$ (n = 1, 6, 11), isolated as PF₆⁻ and/or BPh₄⁻ salts, and characterised by ESI mass spectrometry, NMR spectroscopy, microelemental analysis, and by an X-ray structure determination on $[Pt_2(\mu-S)\{\mu-SCH_2Fc\}]$ $(PPh_3)_4$ [PF₆. The complex contains the typical folded {Pt₂(μ -S)₂} core with an axial ferrocenylmethylthiolate ligand. The corresponding selenolate complex $[Pt_2(\mu-Se){\mu-SeCH_2Fc}(PPh_3)_4]^+$ was similarly obtained by alkylation of $[Pt_2(\mu-Se)_2(PPh_3)_4]$ with FcCH₂Cl, and isolated as PF_6^- and BPh_4^- salts. The attempted liberation of FcCH₂SH from $[Pt_2(\mu-S){\mu-SCH_2Fc}(PPh_3)_4]^+$ using Na₂S was not successful.

© 2013 Elsevier B.V. All rights reserved.

platinum(II) complexes $[Pt_2(\mu-E){\mu-E(CH_2)_nFc}(PPh_3)_4]^+$ (E = S, Se), generated by alkylation of the parent complexes $[Pt_2(\mu-S)_2(PPh_3)_4]$ **1** [10] and $[Pt_2(\mu-Se)_2(PPh_3)_4]$ **2** [11]. The alkylation chemistry of these and closely-related complexes is now a facile and well-understood reaction [12], and the availability of suitable ferrocene-based alkylating agents $Fc(CH_2)_n X (X = Cl, Br)$ suggested that these derivatives should be readily obtainable. We have previously reported a screening survey using ESI mass spectrometry of the alkylation chemistry of $[Pt_2(\mu-S)_2(PPh_3)_4]$ towards $FcCH_2NMe_3^+I^-$ which identified the ion $[Pt_2(\mu-S)(\mu-SCH_2Fc)(PPh_3)_4]^+$ [13], but the complex has not to date been isolated and characterised. Independently of investigations into potential routes to ferrocenyl chalcogenol species, the chemistry of ferrocene-appended platinum complexes has attracted some interest [14], in particular platinum complexes of ferrocene-thiolate ligands [15].

2. Results and discussion

2.1. Synthesis of ferrocenylalkyl-thiolate and -selenolate platinum(II) complexes

A number of derivatives of $[Pt_2(\mu-S)_2(PPh_3)_4]$ that contain ancillary ferrocene groups are already known, but none containing the desired ferrocenylalkylthiolate groups. Thus, there is an extensive chemistry of the related phosphine system $[Pt_2(\mu-S)_2(dppf)_2]$ $[dppf = Fe(\eta^5 - C_5H_4PPh_2)_2]$ [16–20] and derivatives where a ferrocene is attached via the sulfide centres, which include a number of organomercury derivatives [13,21] and the ferrocene-1, 1'-dithiolate derivative $[Pt_2\{\mu-(SC_5H_4)_2Fe\}(Ph_2PCH_2CH_2PPh_2)_2]^{2+}$

E-mail address: w.henderson@waikato.ac.nz (W. Henderson).

^{0020-1693/\$ -} see front matter © 2013 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.ica.2013.07.004

[22]. However, the only isolated derivative of $[Pt_2(\mu-Se)_2(PPh_3)_4]$ containing a selenium-appended ferrocene is $[Pt_2(\mu-Se)(\mu-SeHgFc)(PPh_3)_4]^+$ [23].

Ferrocenylmethyl compounds FcCH₂X are well known to have alkylating characteristics, dependent on the nature of the leaving group X [24]. Reaction of $[Pt_2(\mu-S)_2(PPh_3)_4]$ with readily available FcCH₂OH in refluxing methanol proceeded very slowly giving $[Pt_2(\mu-S)(\mu-SCH_2Fc)(PPh_3)_4]^+$ together with a significant number of other species, as shown by positive-ion ESI mass spectrometry. [FcCH₂NMe₃]I has been used in a number of ferrocenylmethylation reactions, mainly because of its availability and higher reactivity [24,25]. Repeated attempts to produce the pure monoalkylated derivative $[Pt_2(\mu-S)(\mu-SCH_2Fc)(PPh_3)_4]^+$ **3** by refluxing $[Pt_2(\mu-S)(\mu-SCH_2Fc)(PPh_3)_4]^+$ S)₂(PPh₃)₄] **1** with 1 mol equivalent of [FcCH₂NMe₃]I for 24 h were unsuccessful, with the solid product always contaminated by the presence of $[Pt_2(\mu-S)(\mu-I)(PPh_3)_4]^+$, identified by a peak at m/z1599 in the ESI mass spectrum. This species is prevalent in systems containing $[Pt_2(\mu-S)_2(PPh_3)_4]$ and I^- , and has been characterised independently [26]. Substitution of the I^- anion for BPh_4^- via metathesis gave the previously uncharacterised salt [FcCH₂NMe₃]-BPh₄, which was then refluxed for 4 days with $[Pt_2(\mu-S)_2(PPh_3)_4]$ in a 1:1 mol ratio. The isolated solid of $[Pt_2(\mu-S)(\mu-SCH_2Fc)(PPh_3)_4]$ -BPh₄ from the reaction mixture contained a significant amount of $[Pt_2(\mu-S)_2(PPh_3)_4]$ starting material. More potent ferrocenylalkylating agents were therefore investigated.

The use of halomethylferrocene derivatives as alkylating agents has not been as extensively applied as FcCH₂NMe₃⁺, due to their relative instability at room temperature, which requires them to

be used as soon as possible after synthesis in order to avoid decomposition. FcCH₂Cl (which can be readily generated from FcCH₂OH by reaction with oxalvl chloride, a non-oxidising chlorinating agent [27]) proved to be much more reactive towards $[Pt_2(\mu-S)_2(PPh_3)_4]$. The reaction was carried out in methanol and it was found that the addition of a mild, insoluble base (CaCO₃) served to eliminate traces of acidic by-products from the chlorination process, which were manifested in the formation of a green initial reaction solution which turned to the expected yellow-orange colour on addition of CaCO₃. After filtration of the reaction mixture, the product was isolated from the filtrate as either its PF_6^- or BPh_4^- salts, **3a** and **3b** respectively. The ESI mass spectrum of **3a** showed a single ion due to the parent cation $[Pt_2(\mu-S)(\mu-SCH_2Fc)(PPh_3)_4]^+$ at m/z1702.282 (calculated m/z 1702.261). Crystallisation of 3a from CH₂Cl₂-diethyl ether gave orange crystals that were suitable for an X-ray structure determination, and were found to be the bisdichloromethane solvate, in agreement with microanalytical data. The ¹H NMR spectra of **3a** and **3b** showed the expected PPh₃ (and BPh₄⁻) resonances as a complex multiplet, three resonances for the cyclopentadienyl protons as expected, together with an SCH₂ resonance that appeared as a broad singlet, with a broadened base. Although coupling constants could not be measured, its appearance is characteristic for the SCH₂ protons of other monoalkylated derivatives of $[Pt_2(\mu-S)_2(PPh_3)_4]$, arising from ³¹P and ¹⁹⁵Pt coupling. The ³¹P{¹H} NMR spectra showed a complex central resonance centred around δ 24, with two sets of satellites due to coupling to ¹⁹⁵Pt clearly visible, and ¹J(PtP) coupling constants of 3264 and 2627 Hz for phosphines trans to thiolate and sulfide

6b, X = BPh₄

Download English Version:

https://daneshyari.com/en/article/7751349

Download Persian Version:

https://daneshyari.com/article/7751349

Daneshyari.com