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Large-amplitude, geometrically non-linear vibrations of free-edge circular plates with geometric imper-
fections are addressed in this work. The dynamic analog of the von Kármán equations for thin plates,
with a stress-free initial deflection, is used to derive the imperfect plate equations of motion. An
expansion onto the eigenmode basis of the perfect plate allows discretization of the equations of
motion. The associated non-linear coupling coefficients for the imperfect plate with an arbitrary shape
are analytically expressed as functions of the cubic coefficients of a perfect plate. The convergence of
the numerical solutions are systematically addressed by comparisons with other models obtained for
specific imperfections, showing that the method is accurate to handle shallow shells, which can be
viewed as imperfect plate. Finally, comparisons with a real shell are shown, showing good agreement on
eigenfrequencies and mode shapes. Frequency-response curves in the non-linear range are compared in a
very peculiar regime displayed by the shell with a 1:1:2 internal resonance. An important improvement
is obtained compared to a perfect spherical shell model, however some discrepancies subsist and are
discussed.

© 2008 Elsevier Masson SAS. All rights reserved.

1. Introduction

Geometric imperfections have been recognized since a long
time for having a major effect on the linear and non-linear char-
acteristics of thin-walled structures: from one structure to another
one, even though manufactured by the same technique, it has been
observed that eigenfrequencies and buckling loads can be differ-
ent. In particular, a number of experimental and theoretical studies
conducted in the 60–80s of the last century clearly establish that
the initial deflection of thin structures such as plates and shells,
that are unfortunately unavoidable when dealing with real struc-
tures, is a major cause for explaining the important discrepancies
observed between theoretical results (calculated with an assumed
perfect structure) and experimental observations (Donnell, 1976;
Chia, 1980; Coppa, 1966; Tobias, 1951; Kubenko and Koval’chuk,
2004). Other important factors that could have been incriminated
such as inaccuracy in the boundary conditions, inhomogeneity of
the material or slight variations of the thickness, are not consid-
ered in this study and have been addressed in Chen et al. (2005),
Gupta et al. (2007).

Among other thin shells, circular cylindrical shell with im-
perfections have been thoroughly studied, because of their wide
importance in various engineering fields. The first investigations
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on the subject were generally limited to the effect of axisym-
metric imperfections on the buckling loads (Koiter, 1963; Rosen
and Singer, 1974). Asymmetric imperfections were then intro-
duced in Rosen and Singer (1976). Geometrically non-linear, large-
amplitude vibrations are considered in Gonçalves (1994). Recent
papers give overview of the numerous results available for cylin-
drical shells, where forced and parametric excitation, flutter, exper-
imental measurements of imperfections and fitting to theoretical
models, are detailed, see Amabili (2003), Amabili and Païdoussis
(2003), Kubenko and Koval’chuk (2004) and references therein.

The influence of imperfections on the behaviour of plates has
also been reported by many investigations. Rectangular plates are
generally treated for their wide use in practice, as well as for the
ease of using Cartesian co-ordinates. Free vibrations with large am-
plitude are treated in Celep (1976). Quantitative results on the
effect of an imperfection on eigenfrequencies and buckling loads
are given in Hui and Leissa (1983). The type of non-linearity (hard-
ening or softening behaviour of non-linear oscillations) is also ad-
dressed by Hui (1984). These two studies clearly establish that
large deviations from the perfect theory are present, for ampli-
tude of imperfections being only a fraction of the plate thickness.
However, all the presented results are obtained via a crude ap-
proximation consisting in keeping only one mode in the Galerkin
expansion, so that some of their results must be reconsidered
with more accurate expansions. Forced vibrations with experimen-
tal results are shown in Yamaki and Chiba (1983), Yamaki et al.
(1983). The transition from the hardening behaviour of flat plates
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to the softening behaviour of imperfect rectangular plates is also
addressed in Lin and Chen (1989), as well as in Ostiguy and Sassi
(1992), where the response to simultaneous forced and parametric
excitation is investigated.

The case of circular plates has received less attention. Hui, with
a single-mode expansion and axisymmetric restriction, studied the
type of non-linearity with various (mainly clamped and simply
supported) boundary conditions (Hui, 1983). Yamaki et al., with a
three-mode expansion and also with an axisymmetric restriction,
studied both theoretically and experimentally the forced response
of clamped circular plates (Yamaki et al., 1981a, 1981b).

In all the precedent studies, the method used for analyzing
the results is in most of the cases a Galerkin expansion, based
either on ad-hoc basis functions, or on the eigenmodes of the
perfect structure. However, a number of them used a single-
mode expansion, see e.g. Celep (1976), Hui and Leissa (1983), Hui
(1984), Lin and Chen (1989), Hui (1983). As precised by a num-
ber of studies (Yamaki and Chiba, 1983; Yamaki et al., 1981a;
Ilanko, 2002), these truncations are too severe and may lead to in-
correct results, especially when dealing with non-linear vibrations.
More particularly, it has been demonstrated in Nayfeh et al. (1992),
Touzé et al. (2004) that, when predicting the type of non-linearity
(hardening/softening behaviour) of a structure with an initial cur-
vature, single-mode truncation leads to erroneous results.

The aim of the present study is thus to reconsider some of
the precedent results on imperfect plates, while specifically over-
stepping the limitations underlined in the current state-of-the-art.
More particularly, the following points are addressed. Firstly, the
axisymmetric restriction for the case of circular plates is not re-
tained. Secondly, free-edge boundary conditions, that are generally
not treated in the literature, are considered. Thirdly, a Galerkin ex-
pansion using an arbitrary number of expansion functions is used,
hence overstepping the usual limitation to a one-mode expansion.
The initial shape of the structure as well as its deflection in vi-
brations are expanded on the same expansion functions, the mode
shapes of a circular plate. It leads to analytical expressions of the
coupling coefficients, as functions of the non-linear cubic coeffi-
cients of the perfect plate. The convergence of the numerical solu-
tions is systematically addressed by comparing the obtained results
with the spherical shallow shell model developed in Thomas et al.
(2005b), as well as with finite-elements solutions. It is shown that
converged solutions are available with a reasonable number of ex-
pansion functions, for amplitudes of imperfections up to 30 times
the thickness of the plate. This allows considering a shallow shell
model directly from a plate model.

Finally, comparisons with experimental results on a real shell
are reported. Numerical problems related to the approximation
of the measured geometry are discussed. The linear results pro-
vided by the imperfect plate model are compared to measure-
ments, showing an important improvement with comparison to
the predictions brought by a perfect shallow shell model. At the
non-linear level, frequency-response curves are drawn, in the spe-
cific regime obtained when forcing the first axisymmetric mode,
the eigenfrequency of which is twice those of the two companion
modes with six nodal diameters. The complete experimental report
has already been addressed in Thomas et al. (2007), showing that
the non-linear terms predicted by a perfect spherical shell model
are very far from the measured ones. Although showing a better
agreement with experiment, some discrepancies subsist in some
non-linear coefficients, giving an incorrect prediction of the insta-
bility regions. Finally the complete model predicts the correct type
of non-linearity of the shell, but with an enhanced non-linearity.

2. Theoretical formulation

2.1. General case

2.1.1. Local equation
A thin plate of diameter 2a and thickness h (with h � a), made

of a homogeneous isotropic material of density ρ , Poisson’s ratio ν
and Young’s modulus E , is considered. The equations of motion for
perfect circular plates subjected to large deflections, moderate ro-
tations and with small strain, used in the sequel, are known as the
dynamic analogues of the von Kármán equations, where damping
and forcing have been added. In-plane and rotatory inertia are ne-
glected so that an Airy stress function F is used. Hence, at a given
point of co-ordinates (r, θ), the equations of motion are given in
terms of the Airy stress function F and the transverse displace-
ment w along the normal to the mid-surface of the plate, for all
time t:

D��w + ρhẅ = L(w, F ) − cẇ + p, (1a)

��F = − Eh

2
L(w, w), (1b)
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D = Eh3/12(1 − ν2) is the flexural rigidity, c is a viscous damp-
ing coefficient and p represents the external load normal to the
surface of the plate. ( ¨ ) denotes a twice differentiation with re-
spect to time t and (·),αβ is the partial derivative with respect to
α and β . The expression of the Airy stress function F as a func-
tion of the membrane stresses can be found in Touzé et al. (2002).
Laplacian operator writes:

�(·) = (·),rr + 1

r
(·),r + 1

r2
(·),θθ . (3)

As shown in Fig. 1, the geometric imperfections are included in
the formulation by splitting the transverse displacement w into a
static part w0 and a dynamic part w̃ , so that:

w(r, θ, t) = w̃(r, θ, t) + w0(r, θ). (4)

In order to satisfy the static equilibrium initial state, both p and
F are similarly split in two quantities, a time-dependent one and
a static one:

F = F̃ + F0, (5a)

p = p̃ + p0. (5b)

Substituting Eqs. (5) in Eqs. (1), one obtains:

D��w̃ + D��w0 + ρh ¨̃w
= L(w̃, F̃ ) + L(w0, F̃ ) + L(w̃, F0) + L(w0, F0)

− c ˙̃w + p̃ + p0, (6a)

�� F̃ + ��F0 = − Eh

2

[
L(w̃, w̃) + 2L(w̃, w0) + L(w0, w0)

]
. (6b)

The static equilibrium leads to the following relationships:

D��w0 = L(w0, F0) + p0, (7a)

��F0 = − Eh

2
L(w0, w0). (7b)

Since a purely geometric imperfection, without initial in-plane
stress, is considered in this study, the static membrane stress term
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