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a b s t r a c t

The aim of this study is to estimate fatigue life of steels and super alloys under multiaxial loading based
on commonly available tensile properties. The state of loading for most components and structures is
multiaxial resulting from multidirectional loading or stress concentrations. Multiaxial fatigue models
have been developed to predict fatigue behavior under multiaxial loading. These models relate multiaxial
stress/strain components to uniaxial fatigue properties in order to predict fatigue life. In this study, Mura-
lidharan–Manson, Bäumel–Seeger, and Roessle–Fatemi prediction methods are employed to predict uni-
axial fatigue properties based on simple tensile properties in the absence of any fatigue data. Appropriate
multiaxial fatigue models representing the damage mechanism are then used along with the estimated
uniaxial fatigue properties to predict fatigue lives under in-phase and out-of-phase multiaxial loading.
Predictions are compared with experimental multiaxial data for sixteen different steels and super alloys
from literature. Some approximation techniques to predict stress response for in-phase and out-of-phase
loading based on simple tensile properties are also reviewed. Stress estimated based on these approxima-
tion techniques are then used in multiaxial fatigue life predictions and results are compared with exper-
imental observations. It is concluded that fatigue life of steels and super alloys under multiaxial loading
may be predicted reasonably well using appropriate damage models only requiring monotonic
properties.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Multiaxial states of loading are very typical in many industrial
applications. The multiaxial stresses/strains in critical elements
of components and structures can result from multidirectional
loading, stress concentrations due to geometrical complexity, and
residual stresses generated from manufacturing processes. Multi-
axial loading can be categorized as in-phase (IP) and out-of-phase
(OP) loading. For in-phase loading, the ratio of torsion to axial load-
ing and principal directions remain fixed. However, under out-of-
phase loading, principal directions and consequently maximum
shear directions rotate in time.

Fatigue lives under out-of-phase loading are usually shorter
than in-phase loading at the same equivalent strain level. Kanazawa
et al. [1] related the shorter fatigue lives under out-of-phase
(non-proportional) loading to the non-proportional cyclic
hardening phenomenon. They [1] explained this additional non-
proportional cyclic hardening phenomenon with the change in slip

plane from one crystallographic slip system to another one result-
ing from the rotation of maximum shear plane under non-
proportional loading. The interaction of active slip systems then
may cause an additional hardening under non-proportional cyclic
loading.

Multiaxial fatigue models can be used to relate multiaxial state
of loading to uniaxial fatigue properties. Classical models, such as
Maximum Principal Strain and von Mises, were first proposed in
the early twentieth century as failure theories under static or
monotonic loading. These hypotheses were later extended to cyclic
loading and fatigue strength. For tensile failure mode materials, the
Maximum Principal Strain model has been commonly used to pre-
dict fatigue life. The Maximum Principal Strain is related to fatigue
properties and life as shown below:

e1;max ¼
r0f
E
ð2Nf Þb þ e0f ð2Nf Þc ð1Þ

where E is modulus of elasticity, 2Nf is the number of reversals to
failure, and r0f , e0f , b, c are the fatigue strength coefficient, fatigue
ductility coefficient, fatigue strength exponent, and fatigue ductility
exponent, respectively.

The von Mises equivalent strain is used for shear failure mode
materials. The equivalent von Mises strain is calculated as:
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where De/2 is the axial strain amplitude, Dc/2 is the shear strain
amplitude, and �m is the equivalent Poisson’s ratio and can be calcu-
lated from Eq. (3):

�m ¼ meD�ee þ mpD�ep

D�e
ð3Þ

where �ee, �ep, and �e are equivalent elastic, plastic, and total strains
and me and mp are elastic and plastic Poisson’s ratios. The von Mises
equivalent strain and fatigue life are related through the following
Coffin–Manson equation (i.e. Eq. (4)), and therefore, this equation
can be used to calculate fatigue life based on the von Mises crite-
rion, when equivalent strain is calculated from Eq. (2):

�ea ¼
r0f
E
ð2Nf Þb þ e0f ð2Nf Þc ð4Þ

However, these classical models may only work for propor-
tional or in-phase loading. For the case of non-proportional or
out-of-phase loadings, using classical models often leads to signif-
icant errors as these models do not consider the effects of load non-
proportionality. Critical plane models which reflect the damage
mechanism and predict the failure on the specific critical plane(s)
within the material have been developed over the last few decades
[2]. These models may be used for fatigue life estimations under
both IP and OP loading and also for predicting the direction of crack
initiation. Among all types of critical plane approaches, strain–
stress-based models have the advantage of reflecting the constitu-
tive behavior of material such as non-proportional cyclic harden-
ing. These models include both a strain component as the driving
parameter and a secondary stress component taking into account
the cyclic hardening due to non-proportionality of loading as well
as mean and residual stresses. Smith–Watson–Topper (SWT) [3]

and Fatemi–Socie (FS) [4] damage parameters are two examples
of strain–stress-based critical plane approaches for tensile and
shear failure mode materials, respectively.

The Smith–Watson–Topper (SWT) critical plane model for ten-
sile failure mode materials considers the maximum principal strain
amplitude, De1,max/2, as the primary parameter driving the crack
and the maximum normal stress on the principal plane, rmax

1 , as
the secondary parameter opening the crack and expediting the fail-
ure process if tensile, as presented below:

rmax
1

De1;max

2
¼

r02f
E
ð2Nf Þ2b þ r0f e

0
f ð2Nf Þbþc ð5Þ

The Fatemi–Socie (FS) critical plane model for shear failure
mode materials is expressed as a function of maximum shear strain
amplitude, Dcmax/2, as the primary parameter driving the crack
and maximum normal stress acting on the maximum shear strain
plane, rmax

n , as the secondary parameter, as presented by Eq. (6).
The maximum normal stress on the maximum shear plane opens
the crack and expedites the failure process if tensile or closes the
crack and retards the failure process if compressive. The uniaxial
form of the FS equation is given as:
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where ry is the material monotonic yield strength, and k is a mate-
rial constant found by fitting fatigue data from uniaxial tests to fa-
tigue data from torsion tests.

Fatigue data are not always available and generating fatigue
properties is an expensive process. Furthermore, a slight change
in material chemical composition or any surface enhancements
such as shot peening or hardening may greatly affect the fatigue
behavior. Therefore, developing predictive techniques for fatigue

Nomenclature

b axial fatigue strength exponent
c axial fatigue ductility exponent
E modulus of elasticity
FS Fatemi–Socie
HB Brinell Hardness
IP in-phase
k material constant in the FS parameter
K strength coefficient
K0 cyclic strength coefficient
n strain hardening exponent
n0 cyclic strain hardening exponent
2Nf reversals to failure
OP out-of-phase
SWT Smith–Watson–Topper
a non-proportional cyclic hardening coefficient
c shear strain
Dcmax maximum shear strain range
Dcmax/2 maximum shear strain amplitude
Dc/2 shear strain amplitude
D�e equivalent strain range
D�ee equivalent elastic strain range
D�ep equivalent plastic strain range
De/2 axial strain amplitude
D�e=2 equivalent strain amplitude
De1,max/2 maximum principal strain amplitude
D�rIP equivalent in-phase stress range

D�rOP equivalent out-of-phase stress range
Dr/2 axial stress amplitude
Ds/2 shear stress amplitude
e axial strain
ef true fracture strain
e1,max maximum principal strain
�ea equivalent strain amplitude
�ee equivalent elastic strain
�ep equivalent plastic strain
e0f axial fatigue ductility coefficient

w material constant in Bäumel–Seeger method
k shear to axial strain ratio
me elastic Poisson’s ratio
mp plastic Poisson’s ratio
�m equivalent Poisson’s ratio
r normal stress
rmax

1 maximum normal stress on the maximum principal
strain plane

rmax
n maximum normal stress on the maximum shear strain

plane
ru ultimate strength
ry yield strength
�rIP in-phase equivalent stress
�rOP 90� out-of-phase equivalent stress
r0f axial fatigue strength coefficient
s shear stress
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