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a b s t r a c t

This contribution presents a model for multiaxial fatigue life estimation where a combination of devia-
toric strain amplitudes defines the fatigue parameter. It also takes into account the influences of both
hydrostatic stresses and mean deviatoric stresses. Assessment considers 211 proportional and
non-proportional strain-controlled programs reported in the literature, including a number of cases with
mean strains/stresses, for three steels and two aluminum alloys. The resulting life estimates correlates
well with the experiments, falling in most cases within a factor of two bandwidth.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Innovative solutions in the mechanical design process have de-
manded the development of new tools capable to provide more
realistic descriptions of applied loads and material response. Such
tools may contribute to ‘‘get it right first time’’ design by keeping
experimental programs on prototypes (which can be time consum-
ing and expensive) at a minimum scale. In this scenario, the simu-
lations of more realistic multiaxial stress and strain histories have
been possible with the use of currently available Finite Element
softwares, together with more accurate evaluation of multiaxial fa-
tigue damage (see [1–3] and references therein).

In the low cycle fatigue regime, many life estimates are based
on critical plane approaches [3–6]. In these models, increase in
normal stresses resulting from non-proportional hardening [7]
has been considered to quantify the effect of non-proportional
loading upon fatigue life [8–10]. Other approaches to fatigue dam-
age include the damage evolution law proposed by Jiang [11], the
short crack model of Vormwald and co-workers [12], the modified
Coffin-Manson method by Susmel and co-workers [13], the dam-
age mechanics approach by Carpinteri and co-workers [14,15],
and the moment of inertia method by Meggiolaro and Castro
[16] among others.

As an alternative to the currently available approaches, this pa-
per proposes a model for fatigue life estimation, which presents, as
its main feature, a measure of combined deviatoric strain ampli-

tudes based on the concept of prismatic hull [17–19]. The influence
of normal stresses on fatigue life is taken into account in terms of
the amplitude and the mean value of the hydrostatic stress. Both
strain and hydrostatic stress terms incorporate the effect of non-
proportional loading upon fatigue life. Further, the mean value of
the second invariant of the deviatoric stresses is included in order
to take into account the influence of mean shear stresses upon fa-
tigue life. The resulting model produces fatigue life estimations
which correlate well – within a factor of two bandwidth – with
experimental data available in the literature for steels and alumi-
num alloys subjected to proportional and non-proportional, syn-
chronous and asynchronous, axial–torsional strain histories.

2. Fatigue model

This section starts with the definition of a measure of strain
amplitude (within the setting of multiaxial loading histories), as-
sumed in this study as one of the most important driving forces
responsible for crack nucleation in materials undergoing fatigue
failure in shear mode. The close relation between fatigue damage
and cyclic plasticity in metals (where plastic state variables are
usually written in terms of deviatoric quantities) provides the basic
motivation for considering the deviatoric strains in the definition
of the fatigue parameter proposed in this paper. Further, it is as-
sumed that, under multiaxial loading, fatigue degradation is due
to a combination of loading modes, described here in terms of
strain histories in the deviatoric space.

If e denotes the total strain tensor, then the deviatoric strain ten-
sor e is given by:

0142-1123/$ - see front matter � 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.ijfatigue.2013.11.002

⇑ Corresponding author.
E-mail addresses: mamiya@unb.br (E.N. Mamiya), fabiocastro@unb.br (F.C.

Castro), malcher@unb.br (L. Malcher), alex07@unb.br (J.A. Araújo).

International Journal of Fatigue 67 (2014) 117–122

Contents lists available at ScienceDirect

International Journal of Fatigue

journal homepage: www.elsevier .com/locate / i j fa t igue

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijfatigue.2013.11.002&domain=pdf
http://dx.doi.org/10.1016/j.ijfatigue.2013.11.002
mailto:mamiya@unb.br
mailto:fabiocastro@unb.br
mailto:malcher@unb.br
mailto:alex07@unb.br
http://dx.doi.org/10.1016/j.ijfatigue.2013.11.002
http://www.sciencedirect.com/science/journal/01421123
http://www.elsevier.com/locate/ijfatigue


e ¼ e� 1
3

trðeÞI ð1Þ

and, for the purpose of this study, it can be written in terms of an
orthonormal basis {Ni; tr(Ni) = 0, i = 1, . . ., 5} as follows:

e ¼
X5

i¼1

eiN i ¼
X5

i¼1

ðe : N iÞN i ð2Þ

where the projection e: Ni of the deviatoric tensor e onto each
deviatoric basis element Ni produces the corresponding coefficient
ei, i = 1, . . ., 5. In particular, for the arbitrarily chosen orthonormal
basis
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the coefficients of the deviatoric strain tensor assume the following
forms:

e1 ¼
1ffiffiffi
6
p ð2ex � ey � ezÞ; e2 ¼

1ffiffiffi
2
p ðey � ezÞ;

e3 ¼
1ffiffiffi
2
p cxy; e4 ¼

1ffiffiffi
2
p cxz; e5 ¼

1ffiffiffi
2
p cyz: ð4Þ

where ex, ey and ez are normal strains, whereas cxy, cxz and cyz are
shear strains components with respect to a Cartesian coordinate
system.

It follows that the history of deviatoric strains along a multiax-
ial loading can be described in vector form as follows:

eðtÞ ¼ e1ðtÞ e2ðtÞ e3ðtÞ e4ðtÞ e5ðtÞ½ �T ; ð5Þ

and represented as a curve in R5. Each strain component
ei(t), i = 1, . . ., 5, defines a history for which we can compute the
corresponding amplitude:

ai ¼
1
2
ðmax

t
eiðtÞ �min

t
eiðtÞÞ; i ¼ 1; . . . ;5 ð6Þ

as is illustrated in Fig. 1.a for a three-axial example.

In the present work, fatigue degradation is assumed to result
from a combination of loading modes, described within this setting
by combining the strain amplitudes ai, i = 1, . . ., 5 as follows:

c ¼ 2
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a2
i

 !1
2

: ð7Þ

It is claimed here that the maximum value produced by Eq. (7) –
amongst all orientations H of the frame describing the strain his-
tory in R5-is the appropriate measure to quantify the contribution
of the strain history to the fatigue damage. In this setting, the com-
bined amplitude of the deviatoric strain is defined as

cdev ¼max
H

2
X5

i¼1

a2
i ðHÞ

 !1
2

ð8Þ

where, for each orientation H, the amplitudes ai(H) can be com-
puted from the strain histories ei(H) in the H-oriented frame (see
Fig. 1b for a three-axial example):

aiðHÞ ¼
1
2
ðmax

t
eiðH; tÞ �min

t
eiðH; tÞÞ; i ¼ 1; . . . ;5: ð9Þ

It is worthwhile noticing that the maximum in Eq. (8) en-
sures the frame independence of the proposed measure. The fac-
tor two multiplying the sum within the square root in Eq. (8)
makes the resulting measure cdev be equal to the shear strain
amplitude in the case of completely reversed simple shear load-
ing history.

In order to describe frame orientations H in Eqs. (8) and (9), the
so-called Givens rotations (often employed in the context of diag-
onalization techniques for symmetric matrices (see [20], for in-
stance)) can be considered: rotations in two-dimensional
subspaces defined by axes 1–2, 1–3,. . ., 4–5 are performed as

eðH; tÞ ¼ Q 45Q 35 . . . Q 12eðtÞ: ð10Þ

where matrices Qpq, p, q = 1, ..., 5, p – q, in Eq. (10) are rotation
matrices in plane p–q, built from a five-dimensional identity matrix
by replacing its pp-th and qq-th elements with cos hpq, its pq-th ele-
ment with sin hpq and its qp-th element with �sin hpq. For instance,
a rotation h35 in plane 3–5 is represented by the following matrix:
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Fig. 1. (a) Description of strain history in terms of the coefficients resulting from projection upon basis elements of the deviatoric space; (b) deviatoric strain amplitudes along
arbitrarily rotated axes.
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