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a b s t r a c t

An automatic cohesive crack propagation modelling methodology for quasi-brittle materi-
als using polygon elements is presented. Each polygon is treated as a subdomain that is
modelled by the scaled boundary finite element method (SBFEM). Generalised stress inten-
sity factors (SIFs) based on matrix power function solutions of singular stress fields
obtained from the SBFEM following standard finite element stress recovery procedures is
used to evaluate the crack propagation criterion and determine the crack propagation
direction. Interface elements model the fracture process zones and are automatically
inserted into the polygon mesh as the crack propagates. A shadow domain procedure cou-
ples the polygons and interface elements. It computes the load–displacement response and
crack propagation criterion, taking into account the cohesive tractions on the crack edges
that are modelled as side-face tractions in the SBFEM. Cracks are propagated using a sim-
ple, yet flexible local remeshing procedure that can remesh any arbitrary polygon. Only
minimal changes are made to the global mesh structure each time the remeshing algorithm
is called. Five cohesive crack propagation benchmarks are modelled to validate the devel-
oped method and demonstrate its salient features.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Fracture in quasi-brittle materials such as concrete involves a process zone in which normal and shear tractions can be
transferred across the crack surfaces due to aggregate interlocking and surface friction. In order to capture the physically
observed cracking phenomenon the process zone must be considered in the numerical models/simulations. The cohesive
zone model of Hillerborg et al. [1] is most commonly used to model the process zone. In the finite element method
(FEM), the process zone is usually modelled using zero thickness interface elements.

Different modelling strategies with interface elements have been proposed in the literature such as pre-inserting inter-
face elements along known crack paths, e.g. [2–4], pre-inserting interface elements along all element interfaces in the mesh,
e.g. [5–7] and automatically inserting interfaces elements along the crack surfaces as the crack propagates, e.g. [8–11]. The
methods developed in [2–4] require a priori information of the crack paths that are usually determined from experiments.
The methods developed in [8–10] require sophisticated remeshing algorithms to propagate the crack in addition to high
mesh densities or special finite elements, e.g. [12,13] to model the singular stress fields around crack tips. Although the
methods developed in [5–7,11] do not require remeshing, high mesh densities are required so that the predicted crack paths
are smooth and accurate.
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To tackle the difficulties in remeshing encountered with FEM in crack propagation modelling, nodal enrichment tech-
niques such as the extended FEM (XFEM) [14] and embedded crack models [15] have been proposed. In these methods,
the nodes or elements that are cut by the crack path are enriched with discontinuous Heaviside function to model cracks.
The XFEM includes additional nodal enrichment with singular stress functions to model singular stress fields around cracks.
Both XFEM and embedded crack models share the same appealing feature in that they do not require remeshing to model
crack propagation. To implement cohesive crack models in the XFEM and embedded crack models, the governing equations
are augmented to incorporate the work done by the cohesive tractions along the crack edges. Many applications of cohesive
crack propagation for elastostatics and elastodynamics with XFEM [16–19] and embedded crack models [20–22] have been
reported in the literature. The concepts embodied in these nodal enrichment techniques have also been implemented in
meshless methods to model cohesive crack propagation [23,24].

Recently polygon based finite elements such as polytope elements [25–27] that are based on barycentric coordinates
shape functions [28], the n-sided polygonal smoothed FEM (SFEM) [29], and the Voronoi cell FEM (VCFEM) [30,31] have been
proposed for modelling problems in elastostatics. Some of these methods have been implemented together with nodal

Nomenclature

A area
c integration constants
D constitutive material matrix
E Young’s modulus
I identity matrix
k stiffness components of traction–softening curves
K stiffness matrix of polygon elements
L characteristic length
N shape function matrix
q internal nodal forces along radial line
R rotation matrix
s crack sliding displacement
S matrix of real eigenvalues
u displacement vector
w crack opening displacement
Z Hamiltonian coefficient matrix
C boundary of domain
g circumferential coordinate
h angle
k eigenvalues
m Poisson’s ratio
n radial coordinate
r stress
W transformation matrix
X domain
Bi strain displacement matrices
cðsÞ integration constants corresponding to singular stress modes
Ei coefficient matrices
fc compressive strength
ft tensile strength
Ft nodal load vector of side-face forces
Gf fracture energy
KðhÞ vector of generalised stress intensity factors
Ng number of Gaussian points
r̂ polar radial coordinate
SðnÞ diagonal block of negative eigenvalues
SðsÞ matrix of orders of singularities
ub nodal displacements at boundary
WðqÞ modal forces
WðuÞ modal displacements
Wr stress mode
WðsÞr singular stress modes
WðsÞrL singular stress modes at characteristic length, L
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