Contents lists available at ScienceDirect

Journal of Fluorine Chemistry

journal homepage: www.elsevier.com/locate/fluor

Synthesis and reactivity of a cationic palladium complex as possible intermediate in a Suzuki-Miyaura cross-coupling reaction

Johannes Kohlmann, Thomas Braun*

Humboldt-Universität zu Berlin, Department of Chemistry, Brook-Taylor-Straße 2, 12489 Berlin, Germany

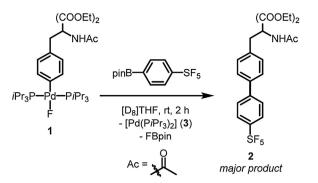
ARTICLE INFO

ABSTRACT

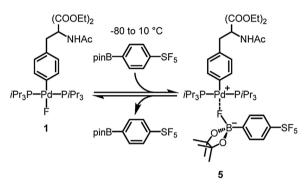
Dedicated to Prof. Antonio Togni the winner of the ACS Prize in Fluorine Chemistry 2017. *Keywords:* Palladium Boron Cross-coupling Fluorido complexes A stoichiometric reaction of a palladium fluorido complex with an aromatic boronic ester yielded a fluorinated 4aryl phenylalanine derivative (aryl = $4-C_6H_4SF_5$) as Suzuki-Miyaura cross-coupling product. Due to the high reactivity of the metal complex, the reaction proceeded smoothly at ambient temperature. Low-temperature NMR investigations revealed a possible role of *trans*-[Pd{BF(4-C₆H₄SF₅)(pin)}(Phe^{Et})(PiPr₃)₂] (**5**, Phe^{Et} = bound phenylalanine derivative = $4-C_6H_4CH_2C$ {NHC(O)CH₃}(CO₂Et)₂, pin = pinacolato = $O_2C_2Me_4$) as a potential intermediate of the transmetallation step. Compound **5** resulted from fluoride transfer from palladium to boron. The similar complex *trans*-[Pd(BF₄)(Phe^{Et})(PiPr₃)₂] (**7**) was generated on treatment of the fluorido complex with NaBF₄. Complex **7** is not stable at room temperature. Degradation gave the phosphonium salt [PiPr₃Phe^{Et}][BF₄] (**4**). Interestingly, the same compound was also found in the initially mentioned cross-coupling reaction as minor product.

1. Introduction

The formation of a biaryl palladium(II) complex as intermediate in the Suzuki-Miyaura cross-coupling reaction is facilitated by a base, but its role in the transmetallation step is still a matter of discussion [1]. Two distinct reaction pathways are often assumed to be decisive for conversion of an oxidative addition product at a metal centre with a boronic acid or ester in the presence of a base [1e,f,l]. On the one hand the base could react with the boronic compound to generate a more nucleophilic boronate first, capable of reacting with the oxidative addition product. On the other hand, the base might replace the metalbound halogen atom of the oxidative addition product. The resulting complex can be of higher reactivity towards the boronic acid or ester. Both possibilities might facilitate a proper transmetallation which yields a biaryl palladium(II) compound. Amatore, Jutand and coworkers described antagonistic effects using fluoride or hydroxide as base in the coupling [1h,i,k-n]. They revealed that the fluorido complex trans-[PdF(4-C₆H₄CN)(PPh₃)₂] is a highly reactive key intermediate in the transmetallation step whereas the boronates $[B(C_6H_5)(OH)_{3-n}(F)_n]^{-1}$ (n = 1-3) have to be regarded as unreactive compounds [1h,i]. Thus, a transmetallation via a fluorido complex is clearly favored. It has been reported that the fluorido complex trans-[PdF(Phe^{Et})(PiPr₃)₂] (1) revealed a remarkable high reactivity towards the boronic ester 2- $BpinC_5NF_4$ [1a]. Note that 1 was synthesized by treatment of its bromo analogue trans-[PdBr(Phe^{Et})(PiPr₃)₂], with NMe₄F in CD₂Cl₂ at room


http://dx.doi.org/10.1016/j.jfluchem.2017.08.003 Received 14 July 2017; Accepted 4 August 2017 Available online 12 August 2017 0022-1139/ © 2017 Elsevier B.V. All rights reserved. temperature [1a]. However, the complex *trans*- $[Pd{BF(2-C_5NF_4)(pin)}$ (Phe^{Et})(PiPr₃)₂] was observed after a fluoride transfer from palladium to boron and is assumed to be an intermediate or a resting state of the coupling reaction [1e,1f,1m,1n,2]. In this contribution, we report on the reactivity of the fluorido complex *trans*- $[PdF(Phe^{Et})(PiPr_3)_2]$ (1) towards the boronic ester 4-BpinC₆H₄SF₅ and also of 1 with NaBF₄.

2. Results and discussion


Treatment of the fluorido complex *trans*-[PdF(Phe^{Et})(PiPr₃)₂] (1) with equimolar amounts of the boronic ester 4-BpinC₆H₄SF₅ in the absence of additional base at room temperature led to the formation of the cross-coupling product (4-C₆H₄SF₅)Phe^{Et} (2) as major product within 2 h (Scheme 1). Additionally, [Pd(PiPr₃)₂] (3), FBpin and minor amounts of the phosphonium salt [4-PiPr₃Phe^{Et}][BF₄] (4) were formed. The reaction includes a transmetallation and a reductive elimination step, which are considered to be key-steps of Suzuki-Miyaura cross-coupling reactions. **2** and **4** were characterized by their NMR spectroscopic and HR ESI/MS data. Analytical data for [Pd(PiPr₃)₂] (3) are in accordance to literature data [1a,3]. FBpin was identified by its ¹¹B {¹H} NMR spectrum, where its signal appears as a broad singlet at $\delta = 22 \text{ ppm } [4]$.

The reaction of **1** with 4-BpinC₆H₄SF₅ was monitored by variabletemperature NMR spectroscopy starting from -80 °C in [D₈]THF. The ¹⁹F{¹H}, ³¹P{¹H} and ¹¹B{¹H} NMR spectra revealed the formation of

^{*} Corresponding author. *E-mail address:* thomas.braun@cms.hu-berlin.de (T. Braun).

Scheme 1. Reaction of *trans*-[PdF(Phe^{Et})(PiPr₃)₂] (1) with 4-BpinC₆H₄SF₅ at room temperature. [4-PiPr₃Phe^{Et}][BF₄] (4) was formed as minor product in addition to the cross-coupling product 2 (ratio 1:8).

Scheme 2. Reversible formation of the ionic intermediate *trans*- $[Pd{BF(4-C_6H_4SF_5)(pin)} (Phe^{Et})(PiPr_3)_2]$ (5) at low temperatures.

the compound *trans*-[Pd{BF(4-C₆H₄SF₅)(pin)}(Phe^{Et})(PiPr₃)₂] (5) between -80 °C to 10 °C (Scheme 2, Figs. 1 and 2). Compound 5 resulted from a fluoride transfer from the palladium atom of 1 to the boron atom of 4-BpinC₆H₄SF₅. Note that ionic intermediates in cross-coupling reactions were considered before [1a,1e–f,2b,2c,2e,2f,2h,2j]. Although we have no distinct experimental evidence, it is rather likely that the cation *trans*-[Pd(Phe^{Et})(PiPr₃)₂]⁺ and its anionic boronate interact with

each other like it is the case for $[Pd(BF_4)(CF = CFCF_3)(PCy_3)_2]$ [5]. Alternatively, the free coordination side at Pd could also be vacant or coordinated by [D₈]THF. The possibility that the transmetallation product trans-[Pd(Phe^{Et})(4-C₆H₄SF₅)(PiPr₃)₂] instead of 5 is formed can be ruled out since no signal for FBpin, which should be liberated simultaneously, was observed by ${}^{11}B{}^{\bar{1}}H$ NMR spectroscopy as it was the case for the room temperature attempt described above. For the cation of 5, a singlet at $\delta = 30.9$ ppm was obtained by ³¹P{¹H} NMR spectroscopy at -50 °C. No coupling to fluorine was detected, as it is the case in the starting compound 1. For the boronate $[BF(4-C_6H_4SF_5)]$ (pin)]⁻, three resonances at $\delta = 88.7$, 63.6 and -128.5 ppm were found by ¹⁹F{¹H} NMR spectroscopy at the same temperature. The first two signals, a quintet and a doublet, were assigned to the SF₅ group of 5, each with a ${}^{2}J_{\text{F,F}}$ coupling constant of 149 Hz [6]. The latter signal at -128.5 ppm resulted from the fluoride of the B-F unit. A broad singlet at $\delta = 6$ ppm in the ¹¹B{¹H} NMR spectrum was found for the boron atom of 5 at -20 °C. The chemical shift of the signals for the anion [BF (4-C₆H₄SF₅)(pin)]⁻ of **5** are in good accordance to data for [BF(4- $C_6H_4SF_5$)(pin)]⁻ with Cs⁺ as counter ion [1a].

However, the formation of trans-[Pd{BF(4-C₆H₄SF₅)(pin)}(Phe^{Et}) $(PiPr_3)_2$] (5) at low temperature was not quantitative. In fact, the fluorido complex *trans*- $[PdF(Phe^{Et})(PiPr_3)_2]$ (1) remained as main complex in between - 80 to 10 °C (Scheme 2, Figs. 1 and 2). While the concentration of 5 compared to 1 increased from -80 to -50 °C, a reversed tendency was found by elevating the temperature further until no signal for 5 was detected at -10 °C by ³¹P{¹H} NMR spectroscopy (Fig. 1). In between -10 to 10 °C, signals for both complexes possibly obscure each other, which impedes the detection of 5. Note that signals for the corresponding boronate of 5 were observed up to 10 °C by ¹⁹F {¹H} NMR spectroscopy (Fig. 2). According to the ³¹P{¹H} NMR spectra at various temperatures, the highest concentration of 5 was obtained at -50 °C with a ratio for 1 to 5 of 3:1. The generation of 1 seems to be thermodynamically preferred at low temperature. On the other hand, the polarity of THF increases by lowering the temperature which might in turn favor the formation of ionic compound 5 [7]. These opposing effects might explain the simultaneous observation of 1 and 5 in different ratios at different temperatures.

Above -10 °C, the cross-coupling product (4-C₆H₄SF₅)Phe^{Et} (2) was liberated along with [Pd(PiPr₃)₂] (3) and FBpin (Scheme 3, Figs. 1 and

Fig. 1. ³¹P{¹H} NMR spectra of the treatment of *trans*-[PdF(Phe^{Et})(PiPr₃)₂] (1) with 4-BpinC₆H₄SF₅ in [D₈]THF at various temperatures. **A-C** Fluorido complex 1 and *trans*-[Pd{BF(4-C₆H₄SF₅)(pin)}(Phe^{Et})(PiPr₃)₂] (5). **D-G** Formation of [Pd(PiPr₃)₂] (3) (along with the cross-coupling product (4-C₆H₄SF₅)Phe^{Et} (2), FBpin) and an unknown compound *. **F-G** Formation of *trans*-[Pd(FHF)(Phe^{Et})(PiPr₃)₂] (6) at room temperature which is at equilibrium with 1. H Formation of [Pd(PiPr₃)₂] (3) and [4-PiPr₃Phe^{Et}][BF₄] (4) in a ratio of 5.5:1 as final phosphorus containing products. *# trans*-[PdCl(Phe^{Et})(PiPr₃)₂] from the synthesis of the Pd fluorido complex 1 [1a].

Download English Version:

https://daneshyari.com/en/article/7752657

Download Persian Version:

https://daneshyari.com/article/7752657

Daneshyari.com