ELSEVIER

Contents lists available at ScienceDirect

Journal of Fluorine Chemistry

journal homepage: www.elsevier.com/locate/fluor

Thermal, structural, optical, dielectric and barocaloric properties at ferroelastic phase transition in trigonal $(NH_4)_2SnF_6$: A new look at the old compound

Igor N. Flerov^{a,b,*}, Andrey V. Kartashev^{a,c}, Mikhail V. Gorev^{a,b}, Evgeniy V. Bogdanov^{a,d}, Svetlana V. Mel'nikova^a, Maxim S. Molokeev^{a,e}, Evgeniy I. Pogoreltsev^{a,b}, Natalia M. Laptash^f

- ^a Kirensky Institute of Physics, Siberian Branch of RAS, 660036 Krasnovarsk, Russia
- ^b Institute of Engineering Physics and Radioelectronics, Siberian State University, 660074 Krasnoyarsk, Russia
- ^c Astafijev Krasnoyarsk State Pedagogical University, 660049 Krasnoyarsk, Russia
- ^d Krasnoyarsk State Agrarian University, 660049 Krasnoyarsk, Russia
- e Far Eastern State Transport University, 680021 Khabarovsk, Russia
- ^f Institute of Chemistry, Far Eastern Branch of RAS, 690022 Vladivostok, Russia

ARTICLE INFO

Article history: Received 3 November 2015 Received in revised form 21 December 2015 Accepted 27 December 2015 Available online 3 January 2016

Keywords: Fluorides Structural disorder Phase transitions Entropy Barocaloric effect

ABSTRACT

Structural phase transition $P-3m1 \leftrightarrow P-1$ of the first order and nonferroelectric nature was found in $(NH_4)_2SnF_6$ at about 110 K in the process of thermal, optical, dielectric and X-ray studies.

Order-disorder transformation is accompanied by large changes of entropy (ΔS_0 = 16.4 J/mol K) and volume ($\Delta V_0/V \approx 1\%$). The structural model associated with three orientations of NH₄ tetrahedra in P-3m1 phase and their complete ordering in P-1 phase was suggested with the entropy change (ΔS_0 = 18.3 J/mol K) close to the experimental value. A good agreement between baric coefficients measured in a direct way (dT_0/dp = -157 K/GPa) and evaluated using entropy and volume changes at phase transition (-170 K/GPa) was found. Barocaloric effects in (NH₄)₂SnF₆ are comparable with those of known solid state refrigerants and are characterised by a low-pressure need for realising their maximum values.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Recent pioneering observations of phase transitions in fluoride double salts $(NH_4)_3TiF_7$ and $(NH_4)_3SnF_7$ have shown that these structural transformations were accompanied by the decomposition process at high temperatures, followed by the emergence of the $(NH_4)_2TiF_6$ and $(NH_4)_2SnF_6$ phases, which were used as the initial substances for the synthesis of both heptafluorocompounds [1,2]. The symmetry of both hexafluorocompounds was trigonal with the P-3m1 space group, Z=1. In $(NH_4)_3TiF_7$, the decomposition process started at temperature rather far from phase transition points and did not prevent the study of physical properties, in particular, thermal properties [3]. X-ray powder studies of ammonium heptafluorostannate showed that the temperatures of both the direct phase transition between two

E-mail address: flerov@iph.krasn.ru (I.N. Flerov).

cubic phases and the decomposition process were rather close to each other [2]. This circumstance could complicate the investigation of the physical properties behaviour at structural transformation especially integral thermodynamic characteristics such as enthalpy and entropy. Thus, before the studying thermal properties of $(NH_4)_3SnF_7$ in details we needed to know the same properties of $(NH_4)_2SnF_6$.

It was surprising that, despite the fact that ammonium hexafluorostannate has been known for many years [4], we have found scant information concerning this compound. The room temperature structure (sp. gr. P-3m1, Z=1) containing isolated $[SnF_6]^{2-}$ octahedra and $[NH]^{4+}$ tetrahedra was first determined by X-ray powder diffraction [5] and then refined by the single crystal experiment [6]. It was also found that $(NH_4)_2SnF_6$, like other A_2SnF_6 compounds (A: K, Rb, Cs, Tl), can be obtained either in trigonal or cubic (sp. gr. Fm-3m, Z=4) modification depending on the conditions of crystallisation [7]. In DTA-measurements only one reversible peak meaning the P-3m1 \rightarrow Fm-3m transition was found in the range $450-520\,^{\circ}$ C for different alkaline hexafluorostannates.

 $^{^{*}}$ Corresponding author at: Kirensky Institute of Physics, Akademgorodok 50, bld.38, Krasnoyarsk 660036, Russia.

Table 1 Main parameters of processing and refinement of the $(NH_4)_2SnF_6$ sample.

Compound	(NH ₄) ₂ SnF ₆
Sp.Gr.	P-3m1
a, Å	6.0711(2)
c, Å	4.8542(2)
<i>V</i> , Å ³	154.95(1)
Z	1
2θ -interval, $^{\circ}$	5-120
No. of reflections	104
No. of refined parameters	29
$R_{\rm wp}$,%	8.15
$R_{\rm p}$,%	5.98
$R_{\rm exp}$,%	5.33
R_{exp} ,% χ^2	1.53
R_{B} ,%	1.22

The same polymorphism was observed in the related compound (NH_4)₂SiF₆ [8,9].

Calorimetric experiments have revealed that the trigonal P-3m1 modification underwent order-disorder phase transition at about 38.6 K, whereas cubic modification remained stable at least down to 25 K, which was the lowest temperature of measurements [10]. Because the standard entropy found for P-3m1 phase $(S^{\circ} = 280.4 \pm 0.6 \text{J/mol K})$ was less than that for Fm-3 m phase $(S^{\circ} = 285.6 \pm 0.6 \text{J/mol K})$, trigonal modification can be considered as metastable. One can suppose that this is the reason of the conversion from trigonal phase to cubic observed at room temperature over time [10]. There is no information about the symmetry of phase realized below 38.6 K for trigonal $(NH_4)_2SiF_6$. Also, the mechanism of structural distortions has not been established. Order–disorder reorientations were attributed to either the SiF_6^{2-} anion [10] or the ammonium cation [11].

The study of optical and structural properties of $(NH_4)_3TiF_7$ and $(NH_4)_3SnF_7$ has shown that the increase of the central atom size $Ti \rightarrow Sn$ led to strong increase of the temperature of the phase transition from the low temperature cubic phase P-3a [1,2]. Taking into account the stronger difference between the Si and Sn ionic sizes one can suppose that a reversible structural phase transition observed in $(NH_4)_2SiF_6$ [10] could exist in trigonal $(NH_4)_2SnF_6$ at much higher temperatures compared to ammonium hexafluor-osilicate.

In this paper, we present the results of structural, polarizing-optic and differential scanning calorimetric searching for phase transition in trigonal (NH₄)₂SnF₆ as well as detailed data on heat capacity, thermal dilatation and dielectric properties in a wide temperature range. Hydrostatic pressure effect as well as barocaloric efficiency were also investigated.

2. Sample preparation and characterization

Ammonium hexafluorostannate, $(NH_4)_2SnF_6$, was synthesised using metallic tin platelets $(\beta-Sn)$ of the 99.9% purity as a starting material. Such a synthesis has been previously described [5], where the starting reagent was freshly precipitated meta-tin acid. We used chemically pure nitric acid (56 mass.% HNO₃) and hydrofluoric acid (40% HF) for tin oxidation and complexation in accordance with the reaction:

$$Sn + 6HF + 4HNO_3 = H_2SnF_6 + 4NO_2 + 4H_2O$$

Chemical etching tin platelets was carried out in the excess of HF with accurate dropwise addition of HNO_3 at room temperature because of high exothermal character of the above reaction. Ammonia aqueous solution (NH $_3$ aq, 25%) was then added to increase the solution pH from 0 to 2:

$$H_2SnF_6 + 2NH_3 = (NH_4)_2SnF_6$$

Thin hexagonal plates of $(NH_4)_2SnF_6$ were formed in the course of evaporation (the PXRD pattern were matching with the JCPDS file No. 026-0094)

The powder diffraction data of $(NH_4)_2SnF_6$ for Rietveld analysis were collected at room temperature with a Bruker D8 ADVANCE powder diffractometer (Cu-K radiation) and linear VANTEC detector. The step size of 2θ was 0.016° , and the counting time was 0.6 s per step. Rietveld refinement was performed using TOPAS 4.2 [12]. All peaks were indexed by the trigonal unit cell (P-3m1) with parameters close to those determined from single crystal experiments [6]. Therefore this crystal structure was chosen as the starting model for Rietveld refinement. Hydrogen atoms were omitted in the model considered. Refinement was stable and gave low R-factors (Table 1,Fig. 1).

Atomic coordinates presented in Table 2 are also in a good agreement with the single crystal data [6].

Fig. 1. Difference Rietveld plot of (NH₄)₂SnF₆. Inset shows the crystal structure.

Download English Version:

https://daneshyari.com/en/article/7752783

Download Persian Version:

https://daneshyari.com/article/7752783

Daneshyari.com